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ERIC Editor's Foreword

As one can judge from its size, this book has taken a long time
to develop. It represents years of effort in terms of conducting re-
search, analyzing and interpreting research results, and pondering
about the research on problem solving. The effort was approached in.
a logical, systematic, and cooperative fashion. The foreword and the
preface each provide comments that outline the book, so those will
not be repeated here. Your attention is called simply to the fact
that this is a massive step forward in presenting, in one book, the
thoughts of some researchers intensively working with problem-solving
ideas. The results of their research attempt to bring more clarity
to the situation from a variety of points of view. By no means for-
gotten is the classroom teacher: not only was the research conducted
in an effort to help the teacher cope better with the teaching of
problem solving, but also some chapters contain specific suggestions
for teachers and others contain lesson plans that teachers might try
out in their own classrooms.

ERIC/SMEAC is pleased to make this book available to researchers

and to teachers.

Marilyn N. Suydam
Editor, ERIC/SMEAC



11i

g

Table of Contents

Editcrs' Preface LR L N N N N N N N N N N N NN NN NN NN Y] 1-¢

Foreward bym[" Hatﬁezd ....‘.““l..‘l“‘“.Q‘l.lll“lllxz.'

INTRODUCTION

I. The Classification of Problem-Solving Research Variables .... I
by Gerald Kulm

1. Background for theé Study of Task Variables ...eceveees 2

Kilpatrick's .Categories of Problem-Solving Research
Variables 2
Problem-Solving Methods and Mathematical Abilities 7

20 Categories Of T‘ESR Variables Cesergecassetst sttt 15

Syntax Variables 16

Content and Context Variables 17
Structure Variables 18

Heuristic Behavior Variables 19

3. Applications of Task VariableS ......eeveeeensessosess 19

Applications of Task Variables to Research 20
S Applications of Task Variables to Teaching 20

CATEGORIES OF TASK VARIABLES

II. The Study of Syntax Variables by Jeffrey Bamett e.eeeeveees 23

1. A Review of Syntax Variables Research ....... 1]

Syntax Variables and Reading Difficulty 25

Syntax Variables in Arithmetic Word Problems 29
Syntax Variables in Algebra and Logic Problems 37
Critique of the Linear Regression Model 40

Syntax Variables and Instruction 43 '

2. The Classification and Definition of Syntax Vari- .... 46
ables: A Verbal Information Processing Model

Length Variables 52
Grammatical Structure Variables 54
Variables Related to Numerals and Mathematical

Symbols 59
Variables Describing the Question Sentence 62

Sequence Variables 64

5



iv

3. The Effects of Syntax on Problem-Solving Progesses: ... 56
Recommendations for Research

4- COﬂClUSiOhS ""“'"'Oﬂoo-l\x-ll---..-.o--o-oo.-o----onco 68

ITI. Content and Context Variables in Problem Tasks by Normam ... 69
Webb

1. Review of Research Related to Content and Context .«... 70
Variables

2. The Classification and Definition of Content Vari- ... 77
ables

Problem Classification by Mathematical Topic 77
Problem Classification by Field of Application 83
Semantic Content Variables 88

Variables Describing the Problem Element} 92

3. The Classification and Definition of Context Vari- ... 94
ables

Problem Embodiments or Representations 95
Verbal Context or Setting 99
Information Format 100

4. Smary .l"'...l!!l..l..llln.lln.ll.'.q.l..\\..ll.ll 102

\
IV. Structure Variables in Problem Solving by Gerald A. Goldin ... 103

1. Review of Related Research  ciiiereverievevrneneennsns 105,

2. The Definition of Task Structure Variables R & I}

State-Space Analysis of Problem Structure 11§
State~Space Homomorphisms and Isomorphisms 127
Symmetries and Subspace Decompositions 136
Algorithms and Strategies 148

Structure Variables in Routine Problems 150

3. Structure Variab: .. =nd Problem-Solving Behavior ..... 158

Symmetries and Conservation Operations 156
State-Space Representation of Problem-Solving
Behavior 160

4. A Summary of Independent and Dependent Variables ..., 164

V. Heuristic Processes as Task Variables by (. Edwin cevseans 171
MeClintock



N\

1. Reviaw of Research on Heuristic Processes cosvenvepes 174

Theoretical Perspectives 174

Research Perspectives (Experimental) 186

Research Perspectives (Exploratory) 188

Techniques for Coding and Scoring Problem-Solving
Processes 201

2. Problem Representation and Heuristic Processes ...... 214

Processes for Understanding the Problem 214

Processes for Selecting a Representation 216
Processes for Exploiting a Representation 221
Processes for Utilizing Alternate Representations 224

-

3. Associating Heuristic Processes with Tasks .c.ceveceees 227

Single Heuristic Processes 228

Multiple Heuristic Processes 230

Interaction of Other Task Variable Categories
with Heuristic Behavior Variables 233

4- COHCIUSiQnS L A R R R R N N N N N T Y I N 234
APPLICATIONS TO RESEARCH

VI. Syntax, Content, and Context Variables Examined in a Re~ ... 23§
search Study by Gerald A. Goldin and Janet H. Caldwell

1, Description of the Study thesseressreertsasnnsennnes 236
2. The Experimental Variables P X. 1

3. Controlling for Syntax Variables tesesecssscstanrsne 251

Problem Length 251

Sequencing of Information 253
Numerals and Mathematical Symbols 253
Syntactic Complexity 266

4. Controlling for Content and Context Variables cevsse 260

Vocabulary 260

Key Words 260

Mathematical Content and "Problem Types' 262

Context Familiarity 263 j

5. Controlling for Structure Variables and the Effects .. 263
of Problem Sequence

Mathematical Algorithm 263
Computational Skills Test 267
Problem Sequence 267




VII.

vi

6- Expe'rime!ltal Fiﬂdings LI I NI B Y RS R R RO BB NI Y S N B N R R S S B N )

7. Conclusion S % ® 90 S 050 0080 W RO ON U SEN N oS g gt gt

A. Concept Acquisition Tasks by William Waters

Structure Variables in Problem-Solving Research teessacasus

S &9 00 000 B0 00 %D

1. Description of the Study teesessessetsssssrsasssane

Background 277
General Design of the Study 278

2. Analysis of Task Structure sacsscusssesssassumacense

Structurally Isomorphic Tasks 279
State-Space Analysis 283
Analysis and Scoring of Strategies 284

3. Summary of Findings Pusessssssacrsanass e an s

Appendix: Directions Given to’Subjects Prior to veseees

Task Administration

B. Classifying Algebra Problems According to the Complexity ...
of their Mathematical Representations by Harold C. Days

1. Description of the Study teceunrenencehusresrsnsates

Coding of Protocols 298
Scoring 299

\

2. Definitions ..l..'.....l.l......-.......4..........

Mathematical Representation of the Problem

Statement 300
Other Terms and Expressions 301

3! The Classification SCheme - 8 8 8 09 U 8 E S PN 00U R LI U SN OO g

Simple Structure 302
Complex Structure 302

Reliability of the Classification Scheme 304

Examples 304

-

4. Empirical Results of the Study cerectsestensnaannas

C. State-Space Representation of Problem~Solving Behavior .....

by George F. Luger

1. Paths Through the Tower of Hanoi State~Space ........

2. Transfer Between Isomorphic Problems

&

e 9 8 %0 o r PO " ¥FO O OBS

271
276

277
277

27?

279

280

2946

287

287

300/,

301

307

311

311

321



vii

VITI. Heuristic Behavior Variables in Research R 17 4

A. Heuristic Behaviors Associated with Probiem Tasks by ceees 327
Fadia Barik .

1. Definitions of Problem Characteristics .......cceee.. 328

2. The Analysis of Observed Processes I £ £

Guessing Moves 335
Deductive Moves 336
Forms of "Guessing an Answer'" Moves 336

3. Empirical Findings CRCRL R R B N IR LY B ST B L B RN B R B B A Y B W 345
4. smary @6 & 00 0 ¢ 008 0008 000 80 0Et sttt es e acaRtatatae 352

B. A Process-Sequence Coding System for Behavioral ..nalysis ... 353
of Mathematical Problem Solving by John F. Lucas,
Nicholas Branca, Dorothy Goldberg, Mary Grace Kentowskzi,
HBoward Kellogg, and J. Philip Smith

1. Rationale 0 8 0 08 e 00 000 N O E C 0NN AN et oE N OEE RSSO e 353
2. Code Sy!nbols m‘d Definitions @88 8 8¢ 8 0o % a0 8 0ot e 358

3. Illustrative Applications of the Coding System ...... 361
Sample Analyses of Problem-Solving Behavior 361
Analysis of a Problem-Solving Protocol 364

4, Reliability of the Coding System - ¥ 5
APPLICATIONS TO TEACHING

IX. Syntax, Content, and Context Variables in Instruction -;rfffxg?s
by Janet H. Caldwell -

1. Syntax, Content, and Context Variables as Indi- ..... 379 -
cators of Problem Difficulty
Varying Task Syntax 382
Varying Task Content and Context 386
2. Using Task Variables ia Instruction cesscasancssnsse 393
Developing Equivalent Test Forms 393
Varying Mathematical Structure 395
3. Unit Planning Using Task Variables .......ccveveere.. 386

Solving Single-Operation Word Problems (A 6th-
Grade Sample Unit- Plan) 396

Solving Problems in Ratio and Proportion (An
Algebra I Sample Unit Plan) 404

5



viii

X. Structure and Heuristic Behavior Variables in Teaching ..... 415
A, Applications of Problem Structure by George F. Iuger ...... 41§

1. Schema Driven Infereacing.snd Routine Problem ....... 415
Types

Lesson Plan 1: River Travel Problems 417
Lesson Plan 2: Money Problems 419

Lesson Plan 3: Age Problems 420

Lesson Plan 4: Developing Plans ¢23

2. Teaching Non-Routine Problem Solving through ........ 423
Analysis of Problem Structure

Lesson Plan 5: Tick-tack-toe (I) 426

Lesson Plan 6: Tick~tack-toe (II) 427

Lesson Plan 7: Tick-tack-toe (III) 428

Lesson Plan 8: The Missionary-Cannibal Problem (I) 428
Lesson Plan 9: The Missionary-Cannibal Problem (II) 428
Lesson Plan 10: The Water Transfer Problem 429

Lesson Plan 11: The Tower of Hanei (I) <429

Lesson Plan 12: The Tower of Hanoi (II) 430

3. conclusions ® 660 600 00600 3600808000 0r000ONNS Q0 g0 0se 430

B. Heuristic Behavior Variables in Instruction by Alen H. .. 431
Schoenfeld

1! Intmduction I'."'..'.ll.llt.l..lllll;l'.ll..l.l... 431
2. Teaching Particular Heuristic Processes - ¥ £

3. Cues Associated with Heuristic Processes in ceeeesce 4238
Problem Seolving

4. "Stage'" Heuristic Variables in Instruction ....cce.cc. 445

5! conCIuSion ® 8 0 @ 0 8% 0600000 EE0 80000800 S 80 NRE SRS g O teeS 454
REACTIONS
Reaction Paper 1| by Max E. Jerman - L1

Reaction Paper 2 by Jeremy Kilpatrick ..ccceviecsvsscccscacsses 963

References LR A L A B BN DR NN I N BN BN B R RN IR I RN BE AN BN I B R A B A A SR RN B A S RPN ) 473

Iﬂdﬁx 88 f 80 0200 00 S0 8 S0 802 E S st 20 s ta s 900 e TR0 000N setseCERES 48?

T &



Editors' Preface

This book is intended for mathematics educators, psychologists,
and others interested in mathematical problem solving as researchers,
practitioners, or students. It could serve as a text for a graduate
course, or as & source of supplementary readings and references.

Chapter I is introductory, and should be read by all who are
interested in the subject of task variables. Chapters II-V describe
in more detail the categories of task variables, and the various theo-
retical perspectives taken by the authors. Chapters VI-VIII consist of
research studies, while Chapters IX-X contain teaching applications;
these two groups of chapters may be read independently of each other.
Finally, two invited reaction papers provide comment and criticism.

The ideas in the book are the products of several different lines
of research, which eventually came to be unified within the task vari-
ables framework. The work on factors affecting problem difficulty,
including the "linear regression' model, was begun in the 1960's by
P. Suppes, M. Jerman, and others at Stanford University. It was car-
ried further in the early 1970's at Pennsylvania State University by
Jerman, and by J.C. Barnett as a graduate student working with R. Hei-
mer. At the University of Pennsylvania the state-space and algorithmic
analysis of problem structure, as well as efforts to control various
task variables for experimental purposes, were advanced by J. Caldwell,
J. Gramick, G.F. Luger, and W.M. Waters (vith acknowledgments to R.

McGee and C. Serotta); who, between 1971 and 1977, were graduate students
working with G.A. Goldin. Another independent develppment was the
description and analysis of heuristic behavior, enormously influenced

by J. Kilpatrick while at Columbia University, and carried forward by

his students, N. Branca, D. Goldberg, H. Kellogg, J.P. Smith, and others,
during the 1970's. At the same time interest in heuristic processes
evolved at the University of Georgia, with research by L.L. Hatfield and
by J.W. Wilson, carried further by E.L. Kantowski and others.

In May 1975, many of these researchers came together with others
in Athens, Georgia, for a conference sponsored by the Problem Solving
Project of the Georgia Center for the Study of Learning and Teaching
Mathematics. At this conference several working groups were organized,
of which two remained particularly active--the Task Variables Group,
chaired by G. Kulm, and the Heuristics Group, chaired by Smith. Under
Hatfield's dedicated leadership us director, the Problem Solving Project
continued to provide a framework for worthwhile collaboration. Out of
the Task Variables Group emerged two projects--the National Collection

of Research Instruments for Mathematical ProbiEE‘Soixigg (a "Problem Bank"
edited by Kulm at -Purdue University), and the present bodk.- From the
- Heuristics Group emerged the process-sequence coding system whicﬁ“ﬁnreuxL\\““‘

fortunate to be able to include in this volume, —

Conceptually the book is somewhere between a monograph and a collection




of invited papers. The categories of task variables, and the model in .
Figure 1.1, were the product of considerable discussion and revision

by the authors of the first five chapters. Of course there remained
many differences of opinion among the contributors, so that the authors
of the chapters take ultimate responsibility for the viewpoints expressed.
As editors, we endeavored to impose a reasonably consistent use of
terminology throughout the book, and to encourage at least a modest
degree of fidelity to the framework described in Chapter I. We bear full
responsibility for the many editorial shortcomings which the reader will
f11d--particular1y in view of the difficulties faced by all of the authors
who, in writing their chapters concu.rently, had access only to pre-
liminary drafts of other chapters. -

Acknowledgments are due to the many individuals -and institutions who
made publication poss.ole. The Georgia Center, in addition to its support
for the Problem Solving Project, arranged for the independent ciitique of
preliminary versions of all of the chapters. We would like to thank the
following outside readers for their helpful suggestions: S.I. Brown (State
University of New York at Buffalo), P.G. O'Daffer (Illinois State Univer-
sity), J. Payne (University of Michigan), J. Sherrill (University of Bri-
tish Columbia), and P. Trafton (National College of Education, Chicago).
Special thanks are due to I. Isaacs (University of the West Indies, Jamaica)
who, while at the University of Georgia, read the entire manuscript. Valu-
able assistance with the index and bibliography was contributed by €.J.
Feltz, C.S. Goldin, and F. McClintock. In addition we appreciate the sup-
port and assistance provided by our own University departments.

Finally, we gratefully acknowledge the support of the ERIC center,
which provided the means for publication, and especially the patient and

tireless work of M.N. Suydam, who supervised the difficult technical
aspects of preparing the manuscript for printing.

Gerald A. Goldin
De Kalb, Illinois

C. Edrin MeClintock
Miami, Florida

November 1979'
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Foreword
&
The Study of Problem-Solving Processes in Mathematical Education
by

- Larry L. Hatfield
- University of Georgia
Athens, Georgia

L

Goals of mathematical education usually assert the paramount value
of learning to solve problems. It is a complex challenge to guide stu-
dents to become competent problem solvers in mathematics. Indeed, there
are numerous varied factors which may influence the learner's progress
and the teacher's efforts (Hatfield, 1978).

In an effort to further our understanding of such factors, this
volume on task variables has been prepared. The focus upon the quali-
ties and influences of mathematical problem-solving tasks has been
adopted intentionally. The authors have apparently used the heuristi-
cal precept: simplify the problgm (of develoning.a theory of mathe-
matical problem solving) by momentarily ignoring some of the conditionms,
variables, or questions. As overviewed by Kulm in Chapter I, this
book seeks to provide information about the study of problem solving by
clarifying the "instrument" (i.e., the task) used to stimulate and
measure the phenomenon of problem solving.

This concentration upon the task at least temporarily ignores much
of the other sources of variation due to the solvers or the solving
situation. Critics may issue challenges ‘to the viability of this tactic.
But it is with considerable patience and detail that the authors of
Chapters I-V have pursued their efforts to specify and clarify their
scheme of task variables in mathematical problem solving. The potential
uses of these conceptualizations are discussed as suggested applications
of task variables to research (Chapters VI-VIII) and to teaching (Chapters
IX-X). Finally, reaction papers by Jerman and Kilpatrick are included to
commend and critique the ideas from the perspectives of two mathematics -
educators whose own earlier efforts influenced the authors, but who were
not directly involved in the formulation of this book.

The treatment of task variables developed herein does not exhaust
the possible sources of variation which might be attributed to problem-
atic tasks in mathematics. The goal has been to identify potentially
significant sources of task variation and to explicate their definitionms,
meanings, and effects as thoroughly as current understandings of human
problem solving might allow. Any such effort must conmstitute a "means
to an end": the long-range goal is.to utilize these task variables in
studies of problem-solving processes in mathematical education. Thus,
the material herein is based upon an assumption that more precise, elab-
orate understandings of the influences of problematic task variations

13
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will further the search for better understandings of how students learn
to solve mathematics problems.

It will be clear to the reader that the auchors have produced a
notable contribution toward these research and imstructional goals. Yet,
to the members of the Task Variables working group of tue Georgia Center
for the.Study of Learning and Teaching Mathematics who initiated this
book, it represents a challenge for continued work. The task variables
developed to date need to be studied and possibly refined in terms of
their meanings, measurements, and uses in teaching and learning how to
solve mathematical problems. Comparable fermulations of subject and
situational variables need to be explicated. Eventually, the complex in-
teractions of these variables must be studied.

Mathematics teachers need to understand how students might construct
solutions to problematic tasks. But, perhaps more important, we need to
understand how students construct their own increasing competence to
solve problems across mathematical learning experiences. These construc-
tions range from learning details of a specific solution to assimilating
heuristical schemata used in several solutions to generalizing compre-
hensive meta-heurdistical strategies across entire classes of problems
and solutions. That is, the variety of constructions for, and about,
solving mathematics problems which students will construct to become
competent is extensive and complex. Yet it must be a central focus in
studying processes to examine these constructions &- to the extent pos—
sible, as they are being constructed. Detailed case studies which
identify and document a solver's existing competence structures for
solving tasks are needed. But teachers are necessarily concerned with
change, and they need knowledge of how such competencies might be built
and reconstructed across time and tasks.

This constructive approach views mathematics as a human construc-
tion, learners as active builders of their own conceptions and éompe-
tencies, and mathematics instruction as the context for stimulating
and guiding these builders in their own constraictive processes. Of
course, mathematics can be viewed as a body of information and mathe-
matical learning as information-processing. /We should all be deeply
aware of the growing influences”of 'the inforhation-processing frame-
work in the study of human cognition. But Newell and Simon (1972)
urge that we recognize the necessity to viéw the human processor as
an adaptive system, possessing a capacity to develop and change the
system while the performing system remains in reasonably good working
order. Indeed, the crucial aspects of learning include changes in
the processors. Thus, a learner is not a rigid, pre-wired machinme
with memory capacities, but rather a dynamic adaptable system where
programs or routines are self-constructed and suSsequencly modified
or reconstructed. Furthermore, the informational content of most
learning experiences includes not only the surface, factual material
but the meta-information relating to the means (processes) for dealing
with the material. Among these conceptions of "how I learn' is an
awareness of one's own processes of learning; in the problem-solving
domain these make up heuristical emphases.
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Problem solving as an endeavor requires the coordination of re-
flection and activity. ' The investigation of solutions as they are
being constructed would involve attention to the solver's actions (both
external and internal) and the interactive thoughts about these actions.
An important antecedent to such actions and reflectiomns is the struc-
ture of goals, both general and task/situation specific, held by the
solver. To understand the genesis and control of a solver's actions
and reflections, the teacher/researcher would know much about these
goals. To date, little appears to be known, though much is often as-
sumed about the solver, regarding theidiosyncratic goal structure. In
devising ways of knowing a solver's goals, it will be important to re-
cognize that goals, too, rare constructed and often transitory. Indeed,
an important purpose and outcome of instruction can be to bring about
changes in the goals held by the student.

Today, the psychology of learning and teaching mathematics seems
to be influenced by at least two rather differing viewpoints. A
rationalist, scientific approach considers the educative situation
as a cybernetic system involving adaptable but predictable beings,
whose actions are describable from the point of view of general control
theory. Instruction becomes an application of rules or algorithms for
stimulating the information-processing capabilities of the student.
Understanding problem-solving processes becomes a search for the pro-
duction systems, invariant across solvers, responsible for controlling
solving behavior (e.g., Landa, 1976b). . .

A constructivist approach views the educative situation as a com-
plexity of perceptions, goals, dispositions, and interactions, all
constructed by individual participants. These-constructions are fluid
and dynamic, being often in flux. The changes are often predictable
only within broad terms. But to understand problem-solving processes
is to search for the varied bases .for, and qualities of, the construc-
tions and reconstructions that constitute thinking. Any "theory" of
problem solving would include attention to the rather uncontrollable
variations in the possible constructions due to idiosyncratic goals
and competencies.

It should be obvious that mathematical education cannot be fairly
dichotomized this way. Yet perhaps elements of these two extremes .do
guide our thinking as teachers and researchers. The study of problem-
solving processes in mathematical education can easily tolerate either
framework, since we sorely need information to be generated for the
teaching and learning of problem solving.

The analysis of task variables in the present book is a small but

important step towards a theory of how students learn mathematical
problem solving.

9. - 15




I.

The Classification of ProblemASolving Research Varisbles
by

Gerald Rulm N\,
Purdue University
West Lafayette, Indiana

The development of problem-solving ability is a cumulative pro-
cess which depends on the history of problem-solving experiences of
the student. Crucial to any problem-solving experience is the task
itself. In order to advance knowledge about problem solving, it is
thus important that close attention be given ta the characteristics
of problem tasks.

The task or collection of tasks is the measuring instrument
which is used to study the phenomena of problem solving. An under-
standing of how the variables describing the task itself interact
with the total situation is a basic requirement® for such a study.
The ability to classify and define task variables would make it
possible to control them systematically, in order to determine their
effects on problem-solving behavior. Furthermore, the precise spec-
ification of problem tasks is necessary for the replication and
extension of experimental studies. One purpose of -this book is to
provide researchers with categories and definitions of variables
describing problem tasks, providing a framework for their control
in problem~-solving studies.

Throughout this book, the term "task variable" will mean any
characteristic of problem tasks which assumes a particular value
from a set of possible values. A task variable may thus be numeri-
cal (e.g., the number of words in a problem) or classificatory
(e.g., problem content area).

In the past, standardized tests have been widely used to
measure problem-solving ability. However, the emphasis in problem-
solving research is shifting to the study of the processes used to
arrive at an answer. The complexity of the written, verbal, or
enactive sequences of behavior that characterize these processes
makes it particularly necessary to examine the measuring instrument
(i.e., the problem task) which elicits them. A languace is needed
t. describe task variables, based on a model for the range of possi-
ble .characteristics of mathematical problems. Such a development
can assist the standardization of vocabulary, helping to distinguish
between problem-solving variables which are intrinsic to the problem
itself and those which describe other aspeets of the problem-solving
event.

-1~
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The conclusions-of problem~solving studies are sometimes stdted
in terms of processes which certain experimental groups are (or are

~ not) cepable of employing. On the other hand, small changes in the
| problem content, its setting, or the wording of the problem may

result in major changes in the problem-solving procedures exhibited

- by subjects. Often these problem characteristics are not sufficiently

described or amalyzed, making it difficult to interpret or reproduce
the findings. The payoff from a ‘thorough description of task varia-
bles, and an investigation of their relationship to experimental
observations, should be increased, replicahility and generalizabil;ty
of research results.

The study of task variables also has important iﬁplications for
classroom instruction. For example, the systematic teaching of a

 particular problem-solving strategy may require sets of problems of

varying complexity to which the strategy is applicable. Problem
complexity variables which are not relevant for a particular imstruc-
tional Segment must be controlled, while the relevant variables are
emphasized. ' As teachers observe the capabilities of individual stu-
dents and their difficulties with different types of problems, it can
be helpful to recognize which characteristics of the problems pose -
particular difficulties, and to tailor discussion towards the expli-
cit emphasis of these problem characteristics. Although these may
seem to be simple ideas, the variabl&®s 8ffecting problem difficulty
are not simply described or easily characterized.

In this chapter, we shall develop the necessary background and
introduce the model for the classification of task variables which
underlies the structure of this book. Definitions for each of the
major categories of task variables will\pe presented and discussed.

1. Background for the Stucy of Task Variables

Kilpatrick's Categories of Problem-Solving Research Variables

In a position paper ocutlining categories of variables and
methodologies in problem~scolving studies, Kilpatrick (1975) attempted
to clarify the role of task variables and to suggest possible methods
of systematic problem description. This paper served as a forerumnner
to the development of the model .described here. An outline of
Kilpatrick's categories is presented in Table 1.1.

Independent V&riables

Kilpatrick specified thréee main categories of independent varia-
bles in problem-solving research—subject variables, task variables,
and situation variables. These three categories are derived from the
necessary components of a problem—-solving event, which are a problem
solver (subject) sclving a problem (task) under a set of conditions

| 7
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Table 1.1 Kilpatrick 's Categories of Problem-Solving Research Variables
. (Kilpatrick, 1875) ,

Independent Variables

Subject Variables

Organismic Variables

Trait Variables

‘Instructional History Variables
Task Variables

Context Variables

Structure Variables
Format Variables

Situation Variables
Physical Setting
Psychological Setting e -

Dependent Variables

Product Variables
Process Variables
Evqluation Variables
Coneomitant Variables




(situation). Any problem-solving event involves a complex interaction
among the variables describing these three components. In order to
place the category of task variables in perspective, we shall outline
briefly the nature of all three categories according to Kilpatrick.

Subjeet Variatles

Subject variables are those quantities which describe or measure
specific attributes of the subject—in this case the problem solver.
They are of great importance in experiments of a clinical nature,
including "teaching experiments' such as are frequently reported in
the Soviet Union. The small number of subjects in such studies makes
a sensitivity to subject variables particularly important in conduct-
ing them and in reporting the results.

- Kilpatrick further classified subject variables according to the
ease with which they can be modified. Those subject variables not
open to change or experimental manipulation were called organismic
variables. Examples of organismic variables are age, sex, socio-
economic status, and geographic residence. Kilpatrick noted that,
except for age and sex, few problem-solving studies have considered
organismic variables other than to describe the sample..

L - - - - e - . -

0f more interest are trgit variables—those wﬂich can be modi-
fied by processes such as teaching. Traits such as cognitive style,
attitude, persistence, mathematical memory, or the ability to
estimate offer promise of being closeiy assoqiated with problem-
solving performance. Kilpatrick suggested that it might be fruitful
to concentrate investigation on specific rather than general traits
—for example, a study of the ability to estimate the magnitude of
numerical solutions to equations might yield clearer information
than studying the general ability to estimate. Many of the abili-
ties listed in Krutetskii's (1976) outline of the structure of
mathematical abilities (see Table 1.3) are traits in Kilpatrick's
sense. ‘

Finally, instructional history variables describe the schools
attended, mathematical topics studied, or problem-solving instruc- -
tion received by the subject. Some of these are more open to
manipulation than others. Kilpatrick points out that the failure
to consider them in selecting experimental groups may be partly
responsible for the lack of differences often found between
instructional methods.

'Task Vm'ia@ les

The category of task variables as first introduced by Kilpatrick -
included three classifications-—context variables, structure varia-
bles, and format variables. Although this classification scheme has
been extensively redefined and elaborated in this book, it is of
inferest to summarize its initial conceptualization.

L
£

19

A



Context variables include those which characterize the physical
sf{tuation of the problem, as well as the language in which the prob-
lem is expressed. They are intended to describe the differences -
between problems having the same mathematical structure. Kilpatrick
noted that the term "content variable" may be appropriate, but
suggested that there may be different interpretations of what is
meant by "mathematical content." Whichever term is used, Kilpatrick
intended "context variables" to include variables describing the
semantic content or mathematicql meaning of the problem.

Structure variables are intended to describe the intrinsic
mathematical structure of a problem. One way to do so is to employ
a mathematicql formula or relation. Kilpatrick suggested that two
problems with the same formula could be said to have the same "syn-
tactic structure,” evidently using this term to refer to the syntax
of the formula or reiacion; i.e., the variables, the operatioms, etc.
‘Another approach to the characterization of problem structare which
Kilpatrick mentions is the "state-space" approach, described in
Chapter IV of this book. The concept of problem structure is

" believed to be extremely important because of its implications for

studying the effects of problem similarities and differences on
problem-solving perfor-.ance.

Format variables describe the different manners or smettirgs in
which a problem may be presented. For example, it may be presented
along with other problems, with hints, or with the aid of some
apparatus. Usually, format variables have been ignored by
researchers with the assumption that problem~solving processes are
not affected by them. Particularly relevant to this assumption are
such format variables as the encouragement of scratch work, or
whether or not the subject is asked to think aloud during problem
solving. In Kilpatrick's opinion, format variables are important
because they represent dimensions across which problem-solving
results need to be generalized.

Situation Variables

In very general terms, situation variables describe the physi-
cal, psychological, or social environment in which the problem-
solving event takes place. The category of situation varigbles

"is difficult to characterize since it includes a variety of com~

ponents. In particular, some situation variables appear to over-
lap or merge with certain task variables, particularly those which
Kilpatrick calls format variables, and it is importgnt to resolve
this difficulty. Py

/
The physical setting includes such variables aa'the type of

H space (classroom, laboratory, outdoors, etc.), the, ‘nature of the
.space (comfortable, stimulating, familiar, ete.), and the avail-

ble resources (calculators, measuring instruments, manipulative
materials, or amount of time). The psychological setting includes

A f‘e}



"iL

variables describing the purpose nf the event (testing, instruction,
practice, etc.), the type of procedure (evaluative, prescriptive,
diagnostic, etc,), and the nature of the learning enviropment (type
or amount of feedback, quantity or quality of interactionm). These
variables are most directly related to the motivation of the suhject
in solving the problem, and the resulting affective outcomes. The
social settirg, although not explicitly discussed by Kilpatrick,
seems to fit as well into this category, including variables des-
cribing the group (size, purpose, type, etc.) or the relationship’
between subject and experimenter (personality, familiarity, etc.).

‘Situation variables are intended not to describe the task or
the subject, but to be external to both. In this book, some of the
above-mentioned variables, particularly the availability of
resources such as calculators, are considered to be task variables

3 and are discussed as such. As Kilpatrick pointed out, situation

: variables are-often nuisance variables—ef little direct interest,
but possibly having unexpected effects on problem-solving perfor-
mance.

 Dependent Vgriables

- [ ] [ ] . . . - [}

The second major category of problem-solving research variables
is derived from subjects' responses to the problem task. Kilpatrick
identified four classifications of dependent variables: product
variables, process variables, evaluation variables, and concamitant
variables.

Product Variables

to a problem. This classification includes the e to solution,
the correctness or incorrectness of a solution, the complete-
ness of a solution. Perhaps the mosSt important cofment made about
these variables is the recommendation that researchers consider
product variables beyond those of speed and accuracy—ineduding,
for example, the elegance of the solution or the multiplicity of
different solutions found.

Product variables have to do with achievemejgsdf the solution
t

Process Variables

Process variables are derived from a subject’'s verbal report
during problem solving, from his or her written work, or from steps
taken with a physical apparatus. Examples include variables des-
cribing the heuristic processes used, the algorithms employed, or
the blind alleys encountered along the subject's path towards a
solution. Kilpatrick was adamant about the impertance of process
variables, stating that "any respectable study of problem solving
in mathematics should include measures of process variables."”
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While this is certainly a worthwﬁggi goal, some caution is necessary,
especially if subject self-reports are the sole process measure.
Nisbett and Wilson (1977), for example, have argued convincingly that
self-reports during problem solving may be inaccurate or incomplete,
and that exclusive reliance on "thinking aloud" reports for obtaining
process variables may result in distaortion of the problem—solving
process., '

Evaluation Variables

Evaluation variables describe the views, thoughts, and opinions
expressed by the subject after the problem has been solved. These
variables include what the subject was trying to do, how the problem
was perceived in relation to other problems, the subject's level of
confidence in the solution, etc. While it may be difficult to
obtain accurate measures of variables in this classification,
Kilpatrick emphasized that they describe information which can be
obtained only from the subject, and should not be neglected.

Conecomitant Variables

Concomitant variables are those variables not included in the
previous three categories, which may nevertheless change during the
course of problem solving. Many of the trait variables mentioned
above could be considered concomitant variables—for example, a
subject's ability to estimate numerical solutions might improve
after solving a set of problems. ~Similarly, more general abilities,
or attitudes, might change. As Kilpatrick noted, concomitant var-
iables cannot be expected to change greatly unless they are very
specific or the number of problems solved is large.

Having placed the category of task variables in the context of
Kilpatrick's framework of problem-solving research variables, let
‘'us digress to survey a few authors of importance to mathematics
education who have placed special emphasis on the characteristics
of problem tasks.

Problem-Solving Methods and Mathematieal Abilities

Many of us have been fascinated and challenged, at one time or
another, with the books by problemists such as Sam Loyd and Martin
Gardner (1959a, b; 1966). These authors were concerned with creat-
ing, collecting, discussing, and solving a wide varlety of problems,
not with the experimental study of problem solving or with its
teaching. Nevertheless, their work has great importance for these
areas. They (and others) recognized and developed the concepts of
the structure of a problem and the relationships between mathemati-
cally similar problems, which importantly affect problem—solving
processes. Ideas suﬁh as problem symmetry, problem Zgomorphisms,

|
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and classification of problems in accordance with their solution
strategies have been used extensively by Gardner. These ideas con-
tribute importantly to the discussion of structure and heuristic
behavior variables in the present book. ;

' George Polya (1945, 1954, 1962, 1965) has been a major contin-
uing influence on the teaching of problem-solving skills. His work
has focused principally on the use of well-selected problem tasks
to foster effective problem solvirg and on the application of
general heuristic processes to problem solving. Table 1.2 presents
Polya's summary of the stages involved in effective problem solving:
(1) understanding the problem, (2) devising a plan, (3) carrying out
the plan, and (4) looking back. In the present book, each category
of task variable is envisioned as influencing some of Lhese stages
more strongly than others.

The heuristic processes suggested by Polya have motivated many
experimental investigations. Perhaps the most intriguing of these
processes, in relation to the study of task varisbles, is the advice
to find a '"related problem." It seems clear that the term "related"
refers to some sort of underlying structural relatedness; but it is
difficult in many cases to desecribe the precise nature of the rela-
tednes$ in terms of problem s¢rvature.. Polya mentions three ways, .
in which problems may be related—by analogy, by specialization,
and by generalization. Related problems can also be obtained by
decomposing and recombining problems. In general, one wishes to
identify the task variables that contribute to the relatedness.

For example, Polya uses the following to illustrate analogous problems:

1.1  Given the length of an edge of a regular tetra-
hedron, find the radius of the sphere circumseribed
about the tetrahedron.

1.2 Given the length of the side of an equilateral
triangle, find the radius of the airele circum-
seribed about the triangle.

Polya was not explicitly concerned with syntax, but it is striking
that two problems have the same number of words and the same sen-
tence structure. They are also drawn from the same mathematical
content area. In these genses they are "related" on a surface
level. It becomes more difficult to describe their structural
relationships. Problem 1.2 is the planar analogue of Problem 1.1,
S0 that analogous formulas which characterize structure exist.
Problem 1.7 can be solved by use of a solid geometry analogue to
the concurrency of the angle bisectors of a triangle, so that it
possesses a solution strategy related to that of Problem 1.2.

Accdrding to Polya, the difficulty with using related prob-
lems is not that of finding problems which seem relevant to the
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problem at hand, but that of finding problems related in such a way
s0 as to help lead to a solution. The precise nature of such rela-
tedness is a question which recurs in this book and which, in this

author's opinion, can be answered through task variable analysis.

‘ Like Polya, Wickelgren (1974) suggests methods for helping to
improve problem-solving abilities. In an attempt to place problem-
solving methods on a theoretical basis, Wickelgren borrowed many
concepts from artificial intelligence. He considered the structure
of the problem task to be extremely important. According to
Wickelgren, a problem consists of information concerning (1) givens,
(2) operations, and (3) goals. Problem types can be characterized
by the amount and kind of information available in each of the three
categories. For example, in a problem to find x (the goal), given
the expression 7x + 3 = 24 (the given), the goal is Zncampletely
specified. The problem, therefore, can be classified as one in
which the goal to be reached is not given. Other types of problems
have campletely specified goals. A "problem to prove" would be one
in which the goal is given; e.g., given the expression 7x + 3 = 24,
prove that x = 3. Other problem classifications arise by varying
the gpecification of the givens and the operations.

Wickelgren also discussed in his theory the ideas of problem
states, operations on states, and solisions. The representation of
possible sequences of actions and possible sequences of states is
called a state-action tree. The state-action tree provides the
framework for much of Wickelgren's discussion of problem-solving
methods. Problems are characterized according to the properties
of their state-action trees; and altheocugh not all problems are
represented by such trees, concepts derived from them, such as the
size of the search space and the identification of subgoal states,
are used extensively in discussing solution methods.

Wickeigren also discussed the idea of related problems, focus-
ing more directly on the relationships between solution methods than
did Polya. Five types of related problems were identified:
unrelated problems, equivalent problems, similar problems, special
cases, and generalizations. The last three are very similar to the
categories discussed by Polya. Wickelgren's analysis of related
problems was based on the difficulty of solution of each. Both
Wickelgren and Polya used the idea of problem structure to charac-
terize the appropriate heuristic processes and solution strategies.

Unlike the aforementioned authors, Krutetskii (1976) was mainly
interested in the experimental study of problem-solving ability.
The development of problem tasks was an important component of his
work. In an attempt to span the complete range of components of
rroblem-solving abilities, 26 problem series containing a total of
79 problems were used. Rather than relying on answer-oriented
instruments, Krutetskii emphasized the importance of relatively
short tests which were designed to measure specific abilities. The
problems were classified according to mathematical content area, as

24
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| { Table 1.2 Polya's Medel for Effective Problem Solving (Polya, 1945)

o

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM
First. What is the wiknom? What are the data? What is
the condition?
You have to Is it possible to satisfy the condition? 1Is the
wnderstand condition sufficient to determine the unknown? Or
the problem. i4s it insufficient? Or redundant? Or contradictory?

Draw a figure. Introduce suitable notatiom.

Separate the various parts of the condition. Can
you write them down?

\

\ DEVISING A PLAN

Second. Have you seen it before? Or have you seen the same
problem in a slightly different form?

Find the comnec- Do you know a related problem? Do you know a theorem
tion between the that could be useful?
data and the un-
known. You may be Look at the wnknown.! And try to think of a familiar
obliged to consi- problem having the same or a similar unknown.
der auxiliary
problems if an Here 18 a problem related toc yours and solved before.
immediate comnec~ Could you use it? Could you use its result? Could
tion cannot be you use its method? Should you introduce some
found. You should auxiliary element in order to make its use possible?
obtain eventually
a plan of the Could you restate the problem? Could you restate it
solution, still differently? Go back to definitioms.

If you cannot solve the proposed problem try to solve
first some related problem. Could you imagine a more
accessible related problem? A more general problem?
A more special problem? An anmalogous problem? Could
you solve a part of the problem? Keep only a part of
the condition, drop the other part; how far is the
unknown then determined, how cam it vary? Could you
derive something useful from the data? Could you

{eontinued)
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Table 1.2 (continued)

think of other data appropriate to determine the
unknown? Could you change the unknown or the data,
or both if necessary, so that the new unknowm and
the new data are nearer to each other?

° Did you use all ﬁhe data? Did you use the whole

condition? Have you taken into sccount all essential
notions involved in the problem?

CARRYING OUT THE PLAN

Third. Carrying out your plan of the solution, check each
Step. Can you see clearly that the step is correct?
Carry out your plan. Can you prove that it is correct?

LOOKING BACK

Fourth. Can you ch ek the mesult? Can you check the argument?

Examine the “an you derive the result differently? Can you see
solution obtained. it at a glance? ) ‘

Can you use the result, or the method, for some other
problem?

[ ]
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well as according to the ability characteristic they were designed to
elicit. Each series of problems was designed to reveal certain
aspects of a particular component of ability, so that it was neces~'
sary to compare results on several problem series. Krutetskii did:
not specifically analyze the task variables in describing his prob-
lems or the processes they measured. Nevertheless, it is quite
clear that control and manipulation of task variables were central
to the development of the series. The description of students'’
strategies and successes with the various tests were made with
reference primarily to the ability characteristic represented by
the test. Table 1.3 summarizes Krutetskii's outline of the struc- -
ture of mathematical abilities, as it evolved from student perfor-
mance on his problem series.

A great deal of information about the effects of task variables
on problem-solving behavior can be obtained directly from Krutetskii's
discussions. In one set of problems with identical context, a slight
change in the syntax of a problem produced a great change in struc-
ture. The following two problems illustrate this type of change:

1.3 A horse moved at a speed of 12 km per hour for
half the time spent om a journey, and at 4 km
per hour for the rest of the time. Find the
horse's average speed.

1.4 A horse traveled half a jourmey at a speed of 12
km per hour, and at ¢ km per hour for the rest
of the jourmey. Find the horse's average speed.

The seemingly unimportant changes produce drastic changes in the
problem and the operations used to solve it. Many students had
difficulty in coping with the change, even when they knew that the
second problem was very different because of the seemingly small
change.

The problems constructed by Xr itetskii, and the far-reaching
results that he obtained, provide an example of the value of well-
conceived and carefully-sequenced problem instruments.

Krutetskii's investigations are not rigorous empirical
studies, but are semi-clinical in nature. Some of the most
valuable data on task variables are provided by the work of
Suppes et al. (1966) and Jerman (1971). These and other studies
were aimed at investigating the problem characteristics affecting
difficulty through the use of linear regression models. Both syn-
tax and structure variables are included in these studies. A
thorough summary of the linear regression analyses is provided
in Chapter II, while additional discussion of the work of
Krutetskii, Polya, and Wickelgren occurs in Chapters III through
V of this book.

e
~



- _13_ - . F \

Y
4{‘

Table 1.3 Krutetskii's Gemeral Outline of the Structure of Mathematical
. Abilities (Krutetskii, 1976)

1, Obtaining mathematical informatioen

A. The ability for formalized perception of mathematical
-materisl, for grasping the structure of a problem. -

2, Processing mathematical information

“

A. The ability for logical thought in the sphere of quanti-
tative and spatial relationships, number and letter symbols;
the ability to think in mathematical symbols,

B. The ability for rapid and broad gemeralization of mathe-
matical objects, relations, and operations,

C. The ability to curtail the process of mathematical
reasoning and the system of corresponding operations;
the ability to think in curtailed structures.

D. Flexibility of mental processes in mathematical activity,

E. Striving for clarity, simplicity, economy, and rationality
of solutions,

F. The ability for rapid and free reconstructicn of the
direction of a mental process, switching from a direect
to a reverse train of thought (reversibility of the
mental process in mathematical reasoning),
3. Retaining mathematical information
A, Mathematical memory (generalized memory for mathematical
relationships, type characteristics, schemes of.arguments

and proofs, methods of problem-solving, and principles of
approach).

4. General synthetic component

A, Mathematical cast of mind.

&N
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2. Categories of Task Varidbles

§ /
/

The following disFﬁssiou outlines four major categories of task
. variables around which the present-book is organized. Each

category will be more completely descrihed in the four chapters which
follow, providing additional detail for the' general model described
here. The categories are: (a) 'variables which!describe the problem
syntar, (b) variables which charicterize the{pr&blemfs mathematical
content and non-mathematical eomtext, (c) vaniables which describe
the structure of the problem, and (d) variables which characterize
the heuristic processes evoked by the problem.,

These categories of task variables are h&pothesized to stand in
a hierarchical relationship to each other, corresponding to increas-
ingly complex levels of processing by the problem Solver. The
hierarchy is represented in Figure 1.1,

- The right column in the figure represents the stages in effac-
tive problem solving according to Polya. These stages are envisioned
to have a general sequential nature although, as with all such models,
the problem.solver may frequently return to earlier stages in the
sequence, As indicated in the diagram by solid arrows, each category
‘of task variables is hypothesized to have primary importance for one
or two of these stages, and secondary importance for others indicated
by broken arrows. For example, syntax wvariables would primarily
influence the subject's initial understanding of the problem, and
have little influence over the later carrying out of a plan of a
solution. . .

The left columm in the figure represents ways in which a teacher
or researcher might analyze the complexity of a problem task. A
surface analysis may yield information about the problem syntax—
the variables being for the most part explicit and susceptible to
direct observation or counting with a minimum of processing. A
semantic analysis also obtains information directly from the prob-
lem statement or embodiment; however, the analysis requires knowledge
of mathematical content and involves interpretation of the meanings
of the terms in the problem statement. Solution analysis requires
the generation of steps in the problem solution, and & description
of the heuristic processes or behaviors used in generating these
steps. Finally, the analysis of problem structure requires not only
the generation of solution pathsjy but examination of non-solution
paths, blind alleys, and other deeper attributes of the problem.
Except perhaps for certain standard problem types, it is mnot possi-
ble to obtain structure variables simply by inspection of the prob-
lem statement. L '

Thus, each method of task analysis in Figure 1.1 is primarily
related to obtaining a particular category of task variables. Next
we shall briefly survey the categories themselves.

L
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Sylésm Variables

\ | )

. Syntax variables are defi

] bles describing the arrangemen

! symbols \in a problem. Note tha
may include the use of special

well as otdinary English usage.

A {

in this book to be those varia-
£ and relationships among words and
he arrangement of words and symbols
thematical vocabulary-or symbols, as
In\ many arithmetic and algebra prob-
lems, the arrangement of words an bols is closely associated with
or reflective of the more fundamedta mathemat{ecal structure of the
problem. : \ \ ’
A great deal of research has b¢endone using syntax variables

as independent variables in regression equations for predicting the
difficulty of "word problems." Althoygh these studies have not
examined syntax variablés separately \from variables in other cate-
gories, it has been found that, for algebra or arithmetic word
problems, syntax variables account for significant amounts of the
variance in the number of subjects achieving the correct numerical
answer (Jerman, 1971). It is\less clear whether syntax variables
offer predictive power in geometry problems, or problems which do not
have a standard arithmetic or algebraic underlying structure.

The most useful syntax variables will be disgussed im detail in
Chapter II. The categories of syntax variables include, for example,
problem length, grammatical complexity, and data sequence. New syn-
tax variables can be generated by using combinations of two or more
previously defined variables. Further variables can also be genera-
ted by assigning indices to variables, produycing measures such as
"rumber of sentences with more than ten words" or '"number of words
unfamiliar to more than 50 percent of the subject population.”
Although these somewhat complex derived variables may add predictive
power in regression studies, they may not be especially useful for
descriptive purposes or for instruction.

Research with syntax variables has provided clear indicatioms
that linguistic variables must be considered in constructing prob-
lems, in order that syntactic difficulties do not interfere with
the variables or treatments of interest. On the other hand, little
research has been done on the effects of variations in syntax on
problem~-solving behavior processes. Studies of reading comprehen-
sion in ordinary language do indicate that syntactic complexity
is an important determinant of the time and difficulty involved
in language processing. It is also well-known that subjects have
less difficulty with problems in which the syntax makes it possible
to translate directly from a verbal to an arithmetic or algebraic
expression. It would be useful to know much more precisely the
role of syntax variables in the decoding process of problem solving.
Because of their easy objective definition, it is in the category
of syntax variables that there is the most. immediate opportunity .
to obtain significant knowledge about probleém-solving processing

~ that can be applied to the kinds of prcblems encountered in schcol
classrooms.




Tt is expected that syntax variables hould Emt closely influ-
ence Polya's first stage, “understanding the probl

\
Content and Context Variables
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After a problem has been read, the ptob;em solver resé:nds to it
in terms of its meaning. The term “content” is used here its usual
sense to refer to the main substance of a message, as oppoded to its
form. Thus by content we refer to mathenatical meanings by con-
text to non-mathematical or incidental mqanings in the preb em state-
ment . | AN
. . i /
Often, a problem is stated with_resJect to some particular mathe~-
maticgl or mathematically related comtent area such as number theory,
measurement, probability, and soc on.. Suc¢h classifications of problems
by mathematical content define one kind of content variable. Subcate-
gories of content areas, as well as specific desctiztﬁxg\of mathe-
matical characteristics, also define content variables. ong the
latter are variables such as the type of mathematical expresgion (e.g.,
monomial, quadratic, linear) or type of mathematical upe;EE:Sh\gppear-
ing in a problem (e.g., binary, inverse, unary). The use of content

variables to construct problems which vary according_tp mathematical

complexity has always been a major focus in mathematics textbooks.
Unfortunately, very little research has been done, beyond work with~
elementary arithmetic algorithms, to determine the best sequencing o
of mathematical content in problem solving. -

Since many problems are presented in a verbal form, either‘written
or oral, it is important to consider linguistic content. variables; i.e.,
the use of mathematical words or phrases which have an impact on the
meaning of the problem. For example, subtraction may be suggested
by the key words "less," "decrease," "minus," "below," and so forth.
Such key words have an enormous potential effect on students compre-
hension of a problem.

It is somewhat difficult to distinguish econtent from context
variables. The term eontert is used here. to describe the non-
mathematical meanings present in the problem statement. These may,
however, help to give meaning to the mathematical content. Often the
verbal context or setting of a problem provides a comnection between

~mathematical content and its application or absence of application to
" the "real world.'> One important reason/to study context variables

is to examine the development of students’ ability to extract essen-
tial mathematical information from the nonessential non-msthematical
information in a problem.

Contexts may vary along dimensions such as concrete-abstract,
applied-theoretical, or factual-hypc:hetical. Other context cate-
gories include thoue which make the statement of the problem more
or less relevant to the problem solver's interests, age, or



-expérience. Alsé inclﬁaed as context variables are those which

relate to the mode of presentatian‘ ‘manipulative, pictorial,’
verbal, etc.

CQntent and context variables should likewise influence Polya's -
"understanding the prohlem" stage, as well as the stage "devising a
plan."

Structure Vartables

To define syntax, content, and context variables requires little
or ro processing of the problem statement. The term “structure,'" on
the other hand, is used to reéfer to the arrangement of and mathematical
relationships among all elements of a prcblem, and structure varia-
bles require some method of analysis in order to define them. K The
attempt to represent the essence of problem structure often resilts
in an oversimplification or an incomplete representation of a problem.
On the other hand, the precise description and the potential for con-
trol of structure variables may be the most promising area in task
variable research.

In some research, the concept of problem structure has been
limited to a description of the algorithmic procedures or algebraic
equations which underlie many routine verbal problems. In these
cases, it is relatively easy to determine whether problems have
identical or different structures. On the other hand, even with .
such problems, it is not clear how closely problemg might be struc-
turally related when they are not identical. Once the structure of
a problem has been clearly described, it is possible to investigate
problem-solving strategies which may be, in a semse, intrinsic to
the problem. This understanding of structure and applicable strate-
gies is a necessary and valuable goal in developing the teaching of

problem-solving skills.

One of the prémiging approaches to studying problem structure
variables is state-space-analysis, a generalization of Wickelgren's
state-action tree. Chapter IVwill develop the necessary background
and provide details; however, a few of the potential outcomes of
state-space analysis should be mentioned here. Virtually any prob-
lem can be analyzed, providing a common ground for research. State-

' space analysis makes\it possible to study separately and simultaneously

the problem and problem solver, by utilizing the state-space to record
problem-solving behavior. This capability helps provide a way to
study how the problem! solver builds internal representations of the
problem and processeS\information during the solution process. State-
space structures provitle a framework within which to study chunking,
curtailment, problem symmetry, algorithms, working backward, decom-
position, and other powerful problem-solving processes.

|
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Problem structure variables principally affect Polya's stage
"carrying out the plan," since they are descriptive of a representa-
.tion of the preblem which has beei\created.

3

‘Heuristic Behavior Variables |

The usual interpretation of heuristic behaviors centers on the
idea that they are gemneral procedures or hints which help one dis~-
‘cover or develop a plan for solving a problem. This characterization
makes it appear that heuristic processes are independent of the
particular problem being solved. There is no question that a given
heuristic procedure may be widely applicable to many types of prob-
lems; it is this characteristic of h2uristic processes that makes
them valuable for problem solving. On the other hand, certain
problems appear to be solved most efficiently, most quickly, most
easily, or most often through the application of a particular heuris-
tic process or set of processes. The structure of some problems may
give rise to specific heuristic behaviors rather than others. An
understanding of the heuristic processes that are problem-specific
adds significantly to our ability to describe a problem task com-
pletely, and to use it in teaching or research. '

It should be nnted that heuristic behaviors, when regarded as
task variables, are very different from the task variables discussed
earlier. For example, rather than describing the difficulty level

of problems, heuristic variables are simply informative. Thus, ang,m”‘/

can indicate that "working backward"” is particularly useful for a~
given problem, but the difficulty level is not implied or syggested
by such a statement. It is conceivable, however, that p lems
solvable by certain heuristic processes are less diffjeult than
those not solvable by them.

As can be seen in Figure 1.1, heuristic vior variables are
hypothesized to affect all of Polya's stages, particularly those of
"devising a plan" and "looking back." Hedristic processes form the
bridge between the problem statement gnéla problem representation,
as well as affecting the transition £o related problem statements
and representations. Of all the pategories of task variables, they
are certainly the most difficult to define and describe precisely.

3. Appl ations of Task Variables

A

The preceding section ﬁgs introduced four main categories of
task variables, which are further explored in Chapters II through
V. Next let us survey some of>the important areas of application
of these ideag, described in tég\\atter part of the book.

N
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Applﬁcﬁtians of Task Vhriabl@s‘ta Research

Most of the research deséribed in this book utilizes the concept
of task variables to construct sgts of problems, designed to measure
the effects of a particular variable or set of varisgbles on problem-
sol¥ing outcomes. The key idea is to vary a single variable at a
time, while holding constant other task variables. The degree of
success in holding constant the variables which are not of experi-
mental interest corresponds to one's degree of confidence that the -
observed effects are indeed due to the variable under study. S

The study by Goldin and Caldwell, for example, is based on-an
instrument which holds constant a substantial list of syn varia-
bles, content variables, and algorithmic structure varidbles, while
studying the effects on problem difficulty of the. classifications
"abstract-concrete" and "factual-hypothetical." Likewise the
studies by Waters and by Luger hold constant problem state-space
variables while varying the problem embodiment, in order to observe
the effects on strategy scores and transfer effects. The study by
Days varies quantities describing the problem's algebraic represen-
tation to ascertain the effects on problem difficulty, and the study
by Harik examines the consistency of the use of specific heuristic
processes while problem structure variables are held constant and
other task variables are modified. Taken together, these studies
may be regarded as just the beginning of a program of research to
explore various aspects of the model in Figure 1.1."

The chapter by Lucas et al. is of a very different sort.
Addressing themselves to the difficult issue of medsuring the use
of particular heuristic processes (an obvious prerequisite to the
reliable study of the problem-specificity of nheyristic behaviors),
a group of researchers has developed an elaborate process-seguence
eoding scheme for classifying subjects' heuriﬁtic behaviors. The
scheme itself is intended to be non-problem-specific, but broad
enough to permit the comparison of heuristic processes employed by
subjects solving very different problems, as well as allowing the

°*comparison of processes used by different subjects solving the

same problem. Some preliminary results on the inter-coder relia-
bility of thg~system are included.

Applications of Task Variables to Teaching | .

The main concept stressed in this book is the value of explicit
treatment of task variables in the teaching of problem solving.
Through the creation of sample unit plans, Caldwell demonstrates
the value for teachers of systematically varying syntax, content
and context variables, wh;lé holding structure variables constant.
These are the variasbles which are characteristic of the problem
statement, and thus are encountered first by students attempting
to solve verbal problems. She also emphasizes the importance of
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proper sequencing of problem content, in order to maximize the learn-
ing which takes place as a series of problems are solved.

- . Similarly, through the creation of sample teaching plans, Luger
argues for the use of structure variables to encourage learning
transfer through the systematic inclusion in instruction of problems
which stand in isomorphic and homomorphic relationships to each other.
This is an idea which has also received support from Usiskin (1968),
who urged the use of problems having identical algebraic structures
but widely varying content and context,

Finally, Schoenfeld discusses the explicit use of beuristic
behavior variables in teaching problem solving. Of particular
interest is his discussion of cued heuristic processes—that is,
the idea that identifiable cues within the problem statement itself
can serve to suggest the appropriate process to the student. By ]
calling attention to these cues in numerous examples,fg convincing
case is developed that the when as well as the how of heuristic
processes can be taught by the sophisticated imstructor. . .

’ It is likely that the ideas in these chapters, extensive as
they are, represent only a few of the many implications which the
‘study of problem task varisbles can have over the years for the
classroom teacher of mathematics.

e
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II.

The Study.of Syntax Variables®
by

Jeffrey Barnett
Fort Hays State University
Hays, Kansas

\(

The role of langusge in the problem—-solving process has received
research attention for many years, and a significant amount of
general information has been accumulated. For example, the relatively
high correlation between mathematical problem-solving ability and the
ability to read and comprehend written material has been confirmed by
numerous studies since the beginning of the nineteenth century. If
one subscribes to the view that the first stage of the verbal problem-
solving process involves reading, decoding, and interpreting the prob-
lem statement, it is evident that linguistic variables should have a
definite relationship to verbal problem difficulty.

One objective of Part I of this book is to establish subcate-
gories of task variables more suitable for close examination. It is
convenient to classify linguistic variables into two subtypes. Those
that deal with the meanings of words and phrases—i.e., semantic varia-
bles~—can be considered as content variables and will be discussed in
Chapter III. Variables that describe the form of the problem state-
ment—its gremmatical and syntactic construction—are the stbject of
the present chapter. ‘

The term "syntax" denotes those varisbles which account for the’
arrangement of and the relationships among words, phrases, and symbols
in problem statements. The two examples below illustrate forms of a
problem that are parallel with respect to content, context, and struc-
ture, but which differ in syntactic complexity.

2.1  How much will Mary's puppy Spot weigh at the end of
1 year, if Spot weighs 2 pounds at birth and gains
3 pounds every 2 weeks?

*The mpaterial in this chapter is based in part upon work suppor—
ted by the National Science Foundation under Grant No. SED77-19157.
Any opinions, findings, and conclusions or recommendations expressed
in this chapter are those of the author and do not necessarily reflect
the views of the National Science Foundation.

-23-
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2.2 Mary's dog had a puppy which she named Spot. She
weighed 2 pounds at birth. Mary observed that she
gatuned 3 pounds every 2 weeks. At-that rate, how
many pounds will Spot weigh at the end of her
first year?

The syntactic structure of Problem 2.7 is different from that
of the second problem. Problem 2,2 has more words and sentences.
It contains several pronouns, which take longer to process than
the nouns used in the first problem. The question appears at the
beginning of Problem 2.1 and at the end of Problem 2.2. The data
in the two problems are presented in different orders, with the
order of data in Problem 2.2 farther removed from that required for
solution. The two problems also differ in the form used to repre-
sent numbers. T

From this example, it is apparent that some types of syntax
variables, such as those describing grammatical structure and symbol
formats, may affect problem difficulty at the decoding stage, while
other types of syntax variables, particularly those iavolving the

sequencing of information and the positions of sentences and phrases,

interact with a problem's underlying structure and therefore directly
affect the case or difficulty of processing the information contained
in the problem statement.

A wide variety of syntax variables have been identified and
studied in numerous investigations, particularly since 1969 when a
linear regression model was first applied to describe the difficulty
of mathematical word problems. Unlike many task variables which
depend on an interpretation of the processes to be used (such as
the number of steps needed to arrive at a solution), the definition
and quantification of syntax varisbles can be derived almost directly
from the problem statement, independently of the method of solu-
tion used by individuals. This not only permits a high degree of
reliability in the determination of these parameters, but also implies
that it may be possible for textbook writers and teachers to manipu-
late syntax easily, producing word problem statements with specific
characteristics.

The results of research related to syntax variables are dis~
cussed in the next section of this chapter. Although we would
consider it to be technically a content or context variable, "scope
of vocabulary' is included in this discussion, since it is related
to readability and has been used in the study of other syntax varia-
bles. The relationship of syntax variables to reading difficulty
in problem solving is exsmined from a historicdl perspective. A
discussion of research on syntax variables in arithmetic word , ob~-
lems is followed by an examination of research on syntax variables
in other content areas of mathematical problem solving, such as

~algebra and logic. Although little has been reported on the effects

of training in syntax, or on the effects of variations of syntax on

A}
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problem-solving behavior, the section concludes with a discussion
of the few studies that have been done in these areas.

In the second half of this chapter, a verbal processing model
is suggested in an effort to clarify the role of syntax variables
in the problem-solving process. Five categories of syntax variables
are considered, with attention to how they are defined and made quan~
titative, and why they may be of importance in verbal problem solving.
These categories, presented in Table 2.1, include varisbles dealing
with (a) length, (b) formats for numerals and symbols, (c) grammati-
cal structure, (d) characteristics of the question sentence, and (e)
sequencing of sentences and data.

In most of the discussion in this chapter, the dependent varia-
bles are product variables in the sense of Kilpatrick, such as the
correctness of the answers or the time in which the answers are
derived (Kilpatrick, 1975). Rarely have process variables been used
as dependent variables, although this might offer interesting possi-
bilities for furthering knowledge about syntax variables in problem
solving. The second half of the chapter will include a discussion
of the potential role of process variables as dependent variables in
problem syntax research. Finally, an attempt will be made to summar-
ize what hds been learned about- syntax variables in mathematical
problem solving, and some implications for future research will be
drawn.

1. A Review of Syntax Variables Research

Syntax Variables and Reading Difficulty

One of the strongest relationships that has emerged from research
is that between reading ability and mathematical achievement. Several
reviews of research in this area have shown correlations betwcen read-
ing ability and mathematics achievement (including mathematical prob-
lem solving) to range from .40 to .86 (Momroe and Englehart, 1931;
Aiken, 1972). Sizable correlations between problem-solving ability
and reading ability have also been demonstrated. For example, Martin
(1964) found that the partial correlation between reading comprehen-
sion and problem-solving ability, with computational ability partialed
out, was higher for fourth~ and eighth-grade students than the partial
correlation between computational ability and\ problem~solving ability,
with reading comprehension partialed out. OtRer studies have shown
similar results. “~

Following the suggestions of earlier investigators (Monroe and
Englehart, 1931), efforts have been made to determine more precise
relationships between specific aspects of reading ability, and mathe~-
matics achievement and problem solving. Aiken (1972) reported that
the data included in the 1963 Technical Report on the California
Achievement Tests are representative of a number of findings which

ff‘ﬂz



Table 2.1 C&tegefﬁes of Syntax Variables at the Surface Level of Analysis

Syntax Category Cxamples

— Number of Characters
e = - ~“Problem Length — Number of Words
— Number of Sentences

Elémgntal Counts (Number of Nouns,
Grammatical Complexity-__——-——""'Nbun to Proncun Ratio, etc,)

\Depth and Complexity (mbﬁdd&dﬂ&l!.

Yngve Means, etc.)

Symbol or Word
Formats —
Numeral or Word
——Position in Problem Statement
Question Sentence \ - ,
\ —— Contains or does not Contain
’ Nunerals
\ Correct Order or Incorrect

Sequence of Data

\ Order for Solution*

*The ORDER variable describes both syntax (sequencing of data in
the problem statement) and mathematical structure (comparison
with correct solution order), thus extending somewhat beyond
the surface level of analysis,
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show that "Reading Vocabulary"™ and "Reading Comprehension" (both
involving semantic variables), *'Mechanics of English" (involving

" syntax variables), and "Spelling" haveé sizable correlations with
"Arithmetic Fundamentals" and even higher correlations with
"Arithmetic Reasoning."” A number of older studies, as well as
several more recent investigations, have showm that knowledge of
vocabulary (a component of reading ability) is an important factor
in the ability to solve mathematical problems. For example, a stud
by Johnson (1949) revealed correlations of .45, .50, and .51 betwee
three tests of arithmetic reasoning and the Primary Mental Abilici
Vocabulary Test. A more recent survey of primary arithmetic texts \
by Willmon (1971) has shown that children are introduced to approxi=
mately 500 new technical words and phrases by the time they enter
fourth grade. These results provide a clear indication of the
importance of vocabulary as a variable influencing the ability to
conmprehend written mathematical problems.

A particularly interesting study designed to explore the rela-
tionship of difficult vocabulary and syntax to problem-solving
ability was conducted by Linville (1970). Four arithmetic word
problem tests were constructed. . The problems in each were similar
structurally, but varied according to difficulty of syntax and vocab-
ulary. Fourth-grade students (n = 408) wer: randomly assigned to one
of four treatments: Easy Syntax, Easy Vocabulary; Easy Syntax, Diffi-
cult Vocabulary; Difficult Syntax, Easy Vocabulary; and Difficult
Syntax, Difficult Vocabulary. Significant main effects favoring the
easy syntax and easy vocabulary tests were found. Not surprisingly,
the investigator also found that in all four treatments, students
of higher general ability and/or higher reading ability performed
significantly better than students of lower ability.

During the past three decades, several attempts have been made
to use the relationship of semantic and syntactic variahles to read-
ing difficulty as an index to classify mathematics materials.

Several types of readability formulas have been used for English
prose, and a few of them, particularly the Dale-Chall formula
(Dale and Chall, 1948), the Spache formula (Spache, 1933), and the
Cloze technique (Taylor, 1956) have been applied to mathematics
texts and problems. A number of investigations which have employed
% one or more of these formulas have demonstrated a wide range of
readability levels in selected mathematies textbooks (Shaw, 1967)
and have provided evidence that the readability level of mathematics
problems can have a significant effect on the problem—solving per—-
formance of children (Thompson, 1968).

The application of readability formulas to mathematics mater-
ialg, however, has not, as yet, been widely accepted as a defensible
approach. Kane (1968, 1970) maintains that readability formulas for
ordinary English prose are usually not appropriate for use with
mathematical materials, in that: (1) letter, word, and syntactical
redundancies are different for English prose and mathematicsl
material; (2) unlike orc 1ary English, the names of mathematical
objects usually have a single denotation; (3) the role of adjectives

42
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becomes more important in mathematical English than in ordinary prose;
— : and (4) tte syntactic structure of mathematical English is less flex-
ible than that of ordinary English. Despite these claims, in a more recent
- study Hater and Kane (1970) found the Cloze technique to be a highly
reliable and valid predictor of‘comprehensihility of mathematical

Very little informatipn is available on the readability level.
of mathematics problems as compared to the average reading ability
of students at each grade level. The few studies that have been
done offer couflicting conclusions. For example, after reviewing
the literature on reading in mathematics, Earp (1969) concluded that
-the vocabulary of .arithmetic texts is often at a higher readability
level than the performance level of students in classes where the
texts are used, He also noted that tlHere is little overlap between
tﬁijvocabulary of reading te- s and that of arithmetic texts.

However, different results were reported by Smith (1971). After
surveying the readability of sixth-grade arithmetic texts (as
measured by the Dale-Chall formula), Smith found: (1) the average |
readability of problems fell within the normal bounds usually con- f
sidered appropriate for that grade level, (2) the readability levels
varied widely from problem to problem within the same text, and (3) |
the readability levels of the overall texts were generally comparabli
to those of related mathematics achievements tests. Based on these
findings, Smith concluded that readability may not be the most impor-
tant factor in arithmetic problem difficulty for this population of
students. This conclusion, however, is based on the assumption that
‘the Dale~Chall formula is an appropriate instrument to use with word
problems in mathematics, an assumption that needs wverification
before these results can be meaningfully interpreted.

In another recent study, Knifong and Holtan (1976) analyzed
the written solutions of 35 sixth-graders to the word problem por-
tion of the Metropolitan Achievement Test. They concluded that
poor reading ability could not have been a factor in 52 percent of
the problems, since errors on these problems were strictly cofiputa-
tional or clerical. The role of reading difficulty for the remain-
ing 48 percent of the mistakes was not determined.

Although the evidence is not conclusive, it is still reasonable
to assume that if the problem solver has difficulty reading a prob-
lem statement, he or she is less likely to be able to understand -

¢ and solve it correctly than if the problem can be read with relative
ease. The application of existing methods of determining readability
to mathematics materials and problems is a plausible approach, but
perhaps what is really needed are formulas or other techniques that
are based on syntactic parameters specific to mathematical problems.
To understand the importance of reading difficulty to problem-solv-
ing ability, researchers must address themselves to the question of
determining what specific components of reading ability (understand-

- ing vocabulary, processing grammatical structures, etc.) affect
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problem-solving behavior, and how the roles of these:components
change over different age groups and problem sets. The linear \\\\\
regression studies discussed beiqw offer a potentially fruitful
method for investigating these questions. \\\\

The most common mathematical problems that students encounter
are arithmetic word problems. These are the problems ty ically
presented in textbooks from grades ome through twelve. The number
of steps needed to reach a solution may vary from problem to prob-
lem, but the student should be able to proceed by arithmetic methods.
Often called routine problems, they differ from evercises only in
that the student must sift through the problem statement to extract
information and seleet the appropriate algorithm or algorithms to
solve the problems. In an erercise the student knows which algor-
ithms need to be used.

In recent years, a group of researchers has attempted to dis-
cover the relationship of various parameters of the problem state-
ment to latency of response and problem difficulty through the use
of a step-wise, linear regression model. Using the "counts" of
these variables as the independent variables, it was hoped that
linear regression would yield coefficients which could be used to
predict the difficulty of a variety of verbal problems. Since a
aumber of these studies will be examined, a brief description of
the linear regression model seems warranted. . The reader is referred
to the original sources for a more detailed discussion of this model
(Suppes, “Hyman, and Jerman, 1966; Suppes, Jerman, and Brian, 1968).

Using the notation adopted in the original investigation, let
vij denote the jth variable of problem i. The weight assigned to
the . jth variable is denoted by a5. In a given group of subjects, A\
let pi be the observed proportion of correct responses on problemi.
The purpose of the model is to predict the dependent variable, py.

-.To insure that the predicted values of pj will always lie
between O and 1, the following transformation is made:

l1-p4
Pi

z, = log

The regression model now becomes z4{ = . For the special
case when P4{ is either 0 or 1, the folloéing tansformation is made:

log (2ng - 1) forpy = O

[

zZ~ ‘ LV ~

1
log E-__l for Py = 1
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where ny is the :a:ai number of stuﬁents tcspbnding to problen 1. It
should be noted that in the first equation for 24 above, 1 - py appears
in the numerator to make z; increase munntonically in difficulty, as the
magnitudes of the variables vij increase.

\

Using the above model in a step~wise iinaar regression analysis, the

variables vy are Introduced Into the regres¥ion equation one ar a Time,
and their cugtribution to ‘the correlation coefficient R, and tho estimate
of -the apount of error vayiance accounted fof by the regreaaion wodel, RZ,
is calculated at each step. The majority of the studies that have employed
this model have-used RZ as the major criterion for the relative importance
of each variable in predicting the proportiqn of correct responses and
success latency. i

The first studies applying this multiple linear regression analy-
sis to mathematical problems were conducted at Stanford University with
elementary school children, operating in a computer-assisted instruc-
tional mode (Suppes, Hyman, and Jerman, 1966} Suppes, Jerman, -and Briasn,
1968). The problegs studied were computational atithm@tie problens,
involving one or more of the four basic arithmetic operations, Since
these studies did not deal directly with verbal problems, the reader is
referred to other sources for a discussion of the procedures used in
these investigations (Loftus, 1970; Segalla, 1973; Barmett, 1974),

Before discussing the outcomes of .linear regression utu&iea‘in the

area of verbal problem solving, let us consider how syntax varialyles

have been quantified in tnese studies. A major problem in the indentifi-
cation of sets of well-defined parameters that relate to or influence
mathematical problem~solving behavior continues to ‘be that of achiev~

ing a high degree of reliability among experimenters, This problem |

is compounded by the fact that the quantification of many interesting:
variables may be dependent on the problem solver's method of soluticn,\
as well as the problem task, Most syntax varisbles, however, can be
quantified with a high degree of relisbility directly from the problem
Statement, once a few conventions are established. (An exception to this
statement is the variable of "vocabulary difficulty,” which depends upon
the ba~kground of problem solvers.) In most cases, syntax variables are
quantified by assigning a unique numerical value te the variable for each
problem statement. These numbers become the vij in the regression equatiom.

In general, syntax variables can be quantified in one of three ways.
The first method allows the variable to assume a positive integer value.
For example, the gentence variable is given a value equal to the number of
sentences in the statement of the problem. A word variable is given a
value equal to the number of uthmmzzar'words in the problem statement. The
majority of syntax variables are quantified by this method and are often
referred to as "continuous'" variables, in the sense that they can assume
any integer value n = 0, 1, 2, .... (The term "continuous" is not used
in the correct mathematical sense.)

A second method of qukntif 'ing syntax variables is to assign the
variable a value of eifther "0" or "I1". Such dichotpmous variables
are used to indicate the presence (1) or absence (0} of a particilar

characteristic. For example, an "order" wvariable cah be assigned a
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value of "1" if the daté’contained in the probleﬁ statement are

presented in the same order in which they can be used to solve the
problem, and a.value of "0" otherwise. Since this "order" variable
involves a comparisaon between the sequencing of dats in the problem
statement (syntax) with the processing of data in the problem solu-
tion (structure), it might be considered to describe both syntax and
mathematical structure, not syntax alone. 'For convenience it is
included in this chapter on .syntax variables. Many variables deal-
ing with problem structure are of the dichotomous type but, in
general, relatively few syntax varisbles are defined in this Eanner.
Researchers have apparently assumed that measures on the amount .of
syntactic complexity rather than measures of the presence or absence
of certain syntactic characteristics would yield better predictors
of problem difficulty. ‘ )

Combination of two or more variables to form a single "compo~-
site" variable constitutes a third method of quantification. This
procedure allows each "sub-variable" to be differentially weighted,
according to its assumed or proven importance. The result is a
composite variable which assumes a value equal to a specified
function of the values of its component variables. Although rela-
tively few studies have employed this method with syntax variables,
‘the procedure has the potential to generate sensitive varisbles
with good predictive power that are relatively easy to manipulate.

A first attempt to extend the linear regression model to mathe-
matics word problcms was made in 1969 (Suppes, Loftus, and Jerman,
1969). In this study, 68 word problems were presented and solved
in a computer-assisted instructional mode, using 27 above-average
fifth~grade students. The LENGTH variable (a measure of the number
of words in the problem statement) was used for the first time,
along with five other variables related to operations, sequence,
and verbal cues. The precise definition of the LENGTH variable,
and 8 number of variables of length that have been used in limear
regression studies, are presented in Table 2.2,

The results of the study were disappointing. The LENGTH
variable and two others were found not to be significant. The
three variables that were significant only accounted for approx-
imately 45 percent of the variance in the proportion of problems
done correctly. However, the organization and procedures used in
the study provided a model for further investigations.

A 1970 study by Loftus used the six variables from the previous
study, plus two new ones, the syntax variables of ORDER (indicating
the sequence of data presented in the problem) and DEPTH (a measure
of grammatical compleXity). The definition of the DEPTH wariable
and several other definitions of grammatical complexity variables
are presented in Table 2.3, A set of 100 problems was adminis-
tered to 16 sixth-grade students, characterized as "low ability.”
The students solved the 100 problems after four weeks of practice
on a computer teletype. The results showed an RZ value of .70, a

<
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Table 2.2 Definitions of Variables of Length

1.

10.

11.

12,

13!

14.

15.
16.

17.

18.

Variable

WORDS :

DIGITS:

WRDGTS :

SYMDGT:

WRDSYM:
LETTRS:
PUNCT:

CHRCTR:
SYLBLS :
AVGWDL:

SENT:

SE}NTLN:
LGNUWD:

LOMXST:

The number of sentences in the problem,

Definition

The number of written words in the pYoblem s(tat:ement,
excluding numerals. A count of one is assigned to a

single word, hyphenated word, or group of words that
would appear as 2 single entry in a dictiomary.

Numerals converted to words is defined \ss the number
of words obtained by converting numerals to.word form
and counting the number of wogrds. \

The nunber of words in the problem stat né, that is,
the sum of variables 1 and 2 (LENGTH = WORDS + NUMWRD).

A count of oneis given to each numeral in the problem.

The number of words and the number of numerals are
defined as the sum of variables 1 and 4 NUM =
WORDS + NUMERL).

A count of one is given to each digit in each numeral,

The number of words and digits, that is, the sum of
variables 1 and 6 (WRDGTS = WORDS + DIGITS).

The number of symbols and digits in each numerjl,

The number of words and symbols, that is, the sym of

variables 1 and 8 (WRDSYM = WORDS + SYMDGT).

Each letter (and each apostrophe and hyphen) are given
a count of omne, .

A count of one is given for each punctuation marik,

A count of one is given for each character in the
problem, that is, the sum of variables 8, 10, and
11 (CHRCTR = SYMDGT + LETTERS + PUNCT).

A count of one for each syllable of every word (i
The average word length as defined by the ratio of‘
variables 10 and 1, that is, AVGWDL. = LETTRS/WORDS

e e gy it e

The average number of words per sentence, that is,
SENTLN = LENGTH/SENT.

A count of one for each word occurring after the
first number and before the last number “in the probjem,

A count of one for each word in the longest sentence,

iy
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Table 2.3 Definitions of V les Dcacrtbing Grummetzcaz Structure

Variable i De!:lni:ion
1. VERBS: : The n\mbe‘l‘r of verbs in the probleﬁ.
2. ADJECTIVES: ‘ % The number of adjectives in the problem,
. 3. nows:  ° The nunher ‘of nouns in the problem, o
4., ADVERBS: ‘ The number of adverbps and adverbial clauses.
5. PRONOUNS: The number of pronouns,
6. .N“Otm TO VERB RATIO: The nﬁmber of nouns divided by the number

of verbs (NOUNS / VERBS),

7. NOUN TO ADJECTIVE RATIO: The number of nouns divided by the number
of adjectives (NOUNS / ADJECTIVES).

8. TPRONOUN TO NOUN RATIO: The number of pronouns divided by the
number of nouns (PRONOUNS / NOUNS),

9. VERB TO ADVERB RATIO: The number of verbs divided by the number
of adverbs (VERBS / ADVERBS),

10. SUBCL: The number of subordinate lauses in the
problem,

11. PREPHR: The number of prepgsitional phrases in
the problem,

12, MAINCL: ) The numher of main clauses in the problem,

13, CLAUSE: The total number of clauses ( CLAUSE =
MAINCL + SUBCL),

14, WDMAIN: The numder of words in the main clauses
of the problem,

15, SUBLEN: The number of words in the subordinate clauses,

16. MCLTH: The average number of words in each main

clause (MCLTH = WDMAIN / MAINCL).

17. SCLTH: ; X The average number of words in the sub~-
ordinate clauses (SCLTH = SUBLEN / SUBCL),

18, AVGCLS: The average clause length (the number of
= wvords in the problem divided by the total
number of ¢lauses) (AVGCLS = LENGTH / CLAUSE),

'\ 19, DEPTH: The highest value of the means of the Yngve
‘ numbers computed for each sentence of the
S problem statement (Yngve numbers messure
the degree of "embeddedness” of each word

g in the sentence. See Figure 2,2 in Section

3 2 of this chapter).
0¥
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respectable amount of variance accounted for. th the DEPTH and
LENGTH variables made significant contributions to the smount of
variance in proportion correct accounted for, and entersd the
regression equation in the third and fourth steps respectively. _
It should be noted, however, that the number of sybjects was very
small, and it was assumed that using the partial c¢orrelation '

— T e ”“cceffiéiéﬁfﬁ“ﬁii—x*Vlltd*mlasurt'af“ﬁmpcrttnce? 5

In the following year, & riumber of studies included some of
the previously defined varisbles, defined new ones, and extended

_ the mode of presentation of problems to paper and pencil. Jerman

- (1971) reported the results of twq studies. In the first, Searle
reanalyzed the data from the 1969 Suppes, Loftus, Jerman study,

" using 14 new v- lables, including an OJDER variable. Both the
ORDER and LENGTH variables were found to be significant. Jerman
followed up this study with an investigation using bo word prob-
lems administered to 20 fifth graders. This was the first study
that was conducted in paper-and-pencil mode. Five variables,
including the syntax variable LENGTH, were fouynd to .account for
87 percent of the variance in problem difficulty. Further support
for the LENGTH variable was found in a study by Jerman and Rees
(1972) and in a follow-up study by Jerman (1972).

At this point it should be noted that direct comparisons of
the importance of variables from one study to another became
inpossible. Investigators modified the definitions of the varia-
bles in each study, and used different problem sets and various
grade levels. -More recent studies, however,' have attempted to
show similarities between the variables, and have tried to
generalize results to several grades and problem types.

After six years of experimentation with variable definitions

and the linear regression equations, the time seemed right to

4 apply these previous results predictively. Using the data from
Jerman's 1971 study with students in grades 4 to 9, Jerman and
Mirman (1972) took the top six variables found in that study and
coded them on a new problem set. Using the resulting regression
model, they then attempted to predict, before administering the
problem set, the proportion of students in a new population that
would correctly solve each of the problems. The results indicated
that the regression model based on pooled data from grades 4 to 9
was unsatisfactory. The data were then reanalyzed, using the same
six variables for each grade level separately. The resulting
regression equations for each grade level gave much better pre-
dictions, with residuals of percentage correct ranging from 4 to
15 perzent. Although these results were not as good as the
researchers would have liked, the study did establish a model
for further investigations. It still remains for the predictive
equations to be refined so as to yield results in an acceptable
range. :
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S The application of the regression model to arithmetic word
problems was extended to the junior college population in & com-
prehensive study by Segalla (1973). Convinced of the importance
of syntax variables, Segalla defined 30 variables that included
maty syntax variables not previously defined. A set of 172 word
problems was administered to 44 low-ability junior college mathe-

7 7~~~ uatics students. *"Bﬂté'-e&«:-hkn:c—of—:ha_dmp_in.ﬁg.

variasble wae removed from the regression equation, the set of
the six most significant variables included the syntax variables
of ORDER, NOUNS, DEPTH, LENGTH, and ADVERBS. |

As interest in the regression model began to grow, it became
apparent that syntax variables played an important role in deter-
mining problem difficulty for subjects of s11 ages. In 1973,
Krushinski investigated the relative importance of 14 syntax
variables, including eight describing aspects of length, four
describing grammatical structure, and two describing numerals
and the question sentence. Three sections of preservice elemen-
tary school teachers enrolled in a course in the teaching of
arithmetic were administered a problem-solving test. The amount
of time permitted on the problem-solving test varied from 20
minutes for section one, to 60 minutes for section two, to one
day for section three. Krushinski found that six variables,
NUMBER ‘OF SENTENCES, NUMBER OF CLAUSES, CLAUSE LENGTH, NUMBER OF
PREPOSITIONAL PHRASES, NUMBER OF WORDS. IN THE QUESTION SENTENCE,"
and NUMERALS IN THE QUESTION SENTENCE, entered the regression
analysis within the first six steps in at least two of the three
sections. After the sixth step, the multiple R's for the three
sections, in order of decreasing time limits, were .856, .738,
and .626., These interesting results suggest that as time becomes
a crucial factor, some syntax variables may decrease in impor-
tance with respect to other (non-syntax) factors.

Following the Krushinski study, Beardslee and Jerman (1973a)
attempted to apply Krushinski's 14 syntax variables to a problem
set appropriate for students in grades 4 to 8. Three test forms
of 30 problems each were prepared using a problem set from a
previous study. The number of words was systematically varied,
so that Form 1 was the original problem set (Form 2) with one-
third fewer words,and Form 3 was the original problem set (Form 2)
with one-third more words. Eighteen separate anslyses were con-
ducted on the data. Only two of the six variables which
Krushinski found to be significant, CLAUSE LENGTH and PREPOSI-
TIONAL PHRASES, entered consistently among the first six variables
in the linear regression analyses. In addition to thee two
variables, two other variables, SENTENCE LENGTH and WORDS IN
SUBCLAUSES, entered the regression consistently within the first -
six steps on two or more test forms. These results suggest that
it may be possible to identify syntax variables that sre important .
for both college and pre-college students. This study is ome of
the few attempts to observe the effects on problem-solving perfor-

. mance resulting from systematic variations of syntax.
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Using the same ;ét‘of data, Beardslee and Jerman (1973b) extended
the previous study to include syntax varisbles not used in the 1973
Krushinski study. In add@:ion, they investigated a wide; ivariety of
measures of length, to determine which definicion accoun;ed for the
most variance in proportion correct. This second purpose was of
, particular importance since the many definitions of length employed
~—————1in several-different studies made interpretation of results extremely

difficult. Seventeen varisbles were defined in the investigation.

The first four, LENGTH, SUBCL, PREPHR, and NUMINQ, were used in the
Krushinski study and the first Beardslee and Jerman study. The
remaining 13 variables included WORDS, NUMWRD, NUMERL, WRDNUM, DIGITS,
SIYMDGT, WRDGTS, WRBSYH, LETTIRS, PUNCT, CHRCTR, SYLBLS, and AVGWDL.

Nine of these, including LENGTH, WORDS, WRDNUM, WRDGTS, WRDSYM, LETTRS, .

CHRCTR, SYLBLS, and AVGWRL, were cansidered to be variables of length.
The Jdefinition of each of -these variables appears in Tables 2.2 and
2.3. Although rone of the variables was found to account for a
significant amount of the variance for sll grades, five of them,
NUMERL, PUNCT, AVGWDL, SUBCL, and PREPHR, were significant for
several grades for oné or more test forms. None of the nine length
variables was shown to be superior to any of the other length varia-
bles, It would appear that, although the many different definitions
of length use different size units to obtain elemental counts, they
are all about equally correlated with problem difficulty.

Although most of the linear regression studies included a
number of kinds of task variables, the dominance of any particular
category of variable (structural, computational, syntactic, etc.)
in determining problem difficulty was not established. This ques-
tion was investigated by Beardslee and Jerman (1974) in a study
involving five "structural' variables, four '"syntax" variables,
and twelve "topic" variables. A 50-item achievement test was
administered to fourth~ and fifth-grade students. Based on a
regression analysis invelving only the twelve topic variables,
four were selected to be combined with the five structural and four
syntax variables. The results showed -that three variables made
significant contributions to the amount of variance accounted for;
the topic variable GEOMETRY and the two structural variables NOMC2
(a variable dealing with the number of "carries" in multiplication)
and COG LEVEL (a variable reflecting the cognitive level of a
problem, based on a classification by Avital and Shettleworth).
Although none of the syntax variables were found to be signifi-
cant, the total amount of variance accounted {or was only .47.
Despite chis disappointing result, this study‘established the need

. for a more inclusive model. The experimenters stated, "None-the-
less some encouraging signs seem evident. One, that & combination
of different classes of variables produces a higher R than using
only one class" (Beardslee and Jerman, 1974, p. 10).

Another study which investigated classes of structural varia-
bles was conducted by Barnett (1974). After analyzing the results
of the previous regression studies, it was noted that the variables
investigated reflect.d either the lingutistie, computational,

o
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operatzoaal or procedural complexity of arithmetic word problems.
Defining for each of the above categories a compoeite variable, the
resulting set of four independent variables accounted for approxi-
mately 64 percent of the variance in difficulty. The LINGUISTICS
variable consisted of the sum of two syntar varisbles of length and
the semantic (content) variable of "mathematics words." Using the

_four independent composite variables as a basis, four instructional

units were constructed to-help students overcome the difficulty
attributable to each variable.. Five parallel forms of a 20-item
verbal problem-solving test were constructed, in which the composite
variables were systematically varied. The four instructional units
were separated by the five parallel forms of the test, and adminis-
tered to 150 college juniors, randomly assigned to either an experi-
mental group or to one of two control groups (the control groups
received instructional units unrelated to problem solving). The
results showed that the instruction based on each of the variables
was significantly effective in improving problem-solving performance.
Interestingly, the amount of variance accounted for by the set of
variables, and the position of each variable in the regression
equation, remained relatively stable across the five tests. These
results present a further case for the use of composite variables
and suggest that these can be rather stable measures in predicting
problem difficulty.

To summarize, the results of several of the studies that have
used the regression model are shown in Table 2.4 (based on data
suggested by Segalla, 1973, p. 60, and Barnett, 1974, p. -37). The
reader is cautioned in interpreting the table, since the data are
based on a variety of subjects, populations, problém sets, and
different definitions. Subject to these limitations, the table
reveals that syntax variables, particularly measures of length,
consistently enter the regression equation in the first six steps.
It would appear from these studies that the syntactic complexity
of arithmetic word problems is a definite contributor to problem
difficulty. As we shall see in the next section, the linear
regression model has also been used with success to predict the
difficulty of problems other than arithmetic word problems.

Syntaxr Variables in Algebra and Logic Problems

One expects to find relationships between syntax variables
and problem difficulty, using problem sets involving algebraic -
solutions as well as arithmetic solutions. Problem statements
which lend themselves to translation into algebraic form may
include well-defined variables that can be used to predict
difficulty with high reliability, due to consistencies in the
"language'" of equations.

Cook (1973a) attempted to apply thecresults of previous
regression studies to a set of algebraic word problems solved

°2



Table 2.4 Variables Entering in the Pirst Sixz Steps for Major Studies Since 1969

1 2 3 4 5 6

Suppes (1969) SEQ CONV ~ OPER  V, CUE STEPS LENGTH
Loftus (1970) SEQ OPER DEPTH LENGTH CONV V. CUE
Jerman (16 var.) OPER V. CUE DIV LENGTH FORMULA 51
Jerman (21 var.) OPER CONV LENGTH ORDER2 DIV _5_2,
Jerman (CAI, 19 var,) OPER2 LENGTH ORDER RECALL 5
Jerman (Pen., 19 var,) LENGTH NOMC2 QUOT DIST COLC2 s1
Jerman & Rees (1972) LENGTH NOMC _  QUOT DIST coLc2 51
Jerman (1972) NOMC QUOT . LENGTH  ° RECALL CONV DIST
Beardslee & Jerman (1973) CL. LEN PREP SEN.LE, SUBCL
Krushinski (1973) | SENT, CLAUSE CL. LEN.  PREP NWOQUE  NUMERL
Merman (1973) | LENGTH QuoT NOMC2 RECALL ~ OPER3 CONV
Segalla (1973) MEMORY2 ORDER1 |, ¥V, CUE OPER PRO, N DIST

- Beardslee §& Jerman (1974) GEOMTY .- COGLEV NOMC2
Barnett (1974) OPER PROCED  LING

S

Note: Variables describing length and syntactic complexity are underlined.
The variables that have not been previously defined in this section include: Variables
describing the sequence of problems and operations (SEQ, Sy, ORDER2), conversions of units
(CONV), needed recall of facts and formulas (RECALL, FORMULA), required operations and
steps (OPER, STEPS), and computations with numbers and specific operations (DIV, NOMC,
QuUOT, COLC2), '
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by college students. Twenty-six v:;iahles, including five arithnntic-

variables from the 1972 Jerman study; thifteen algebraic variables
(dealing with translations and equations); the syntax variables
WRDNUM (a measure of problem length), SENT (the number of sentences),
NUMQS (a variable relating the presence of numbers in the question
sentence), and PREP (the number of prepositions) from the 1973
Krushinski study; and four additional syntax variables (NUMERL,
QUENL, LOGREL, and LGMXST) were computed for 28 word problems.

LGREL was defined as a measure of the numerical relationships in
the problem, and LGMXST was defined to be the.number of words in
the longest sentence of the problem statement. The problem set
consisted of one consecutive-integer problem, two distance problems,
three age problems, four angles-of~-triangles problems, four direct -
variation problems, and seven miscellaneous problems

Two translation variables, three syntam variables, three arith-
metic variables, and four equation variables entered the regression
equation on the first 12 steps, accounting for over 96 percent of
the variance in proportion correct. The variable LGMXST had the
highest correlation with the observed proportion correct, with an
R2 value cf .2962. The variables LGREL and NUMQS entered the
iegression equation in the eighth and twelfth steps respectively.
The study indicates additional support for the effect of syntax /
varisbles of length, althaugh the definition of length in this study
is different from that used in previous studies. Perhaps the most/
encouraging aspect of this investigation, however, is the relatively
high value for R2 at the sixth step (.8040). This redult suggests
real potential for the use of the linear regression model with prob-
lems of this type. ' .

In a second study canducted the same year, Cook (1973b) jnves-
tigated the relationships of 41 variables to problem difficulty
using 19 algebraic word problems selected from the Natiopal Longi-
tudinal Study of Mathematical Abilities Y and Z Test Batteries.

All prohlems selected required the set-up and solution of linear
or quadratic equations.in one variable. The syntax variables
investigated included those from the previous study except PREP,
QUENL, and NUMQS. A new variable, LGNUWD (a count of 1 for each
word that occurred after the first number and before the last
number in the problem statement) was also added.

The results showed one arithmetic; one translation, three
equation, and one syntax variable, SENT, entering on the first
six steps of the regression equation. Three other syntax varia-
bles (LGREL, LGNUWD, and WRDNUM) entered the regression equation
on the ninth, tenth, and twelfth steps respectively. Although
the variable LGMXST, which entered the regression equation first
in the last study, was one of the last to enter in this study,
the continued presence of variables of length in all but a few
studies is a strong indication that this variable plays am.dimpor-
tant role in problem difficulty, and deserves continued systematic
investigation.

P
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- Jansson (1974) applied the linegr regression model in an explor-
atory investigation Jesigned to identify which variables strongly
influence the relative difficulty of judging eimple dediucriive argu-
ments in verbal form. A simple deductive argument was defined to
be a chain of reasoning involving two premises and a conclusion.
Combining results and suggestions from previous studies with
research on logic development, Jansson defined 12 variables which
included the syntax variable WORD and the new ones listed in Table
2.5.

L -

Three tests of class and conditional reasoning were used.
(Class reasoning is of the form "All P's are Q's." Conditional
reasoning is of the form "If P then Q.") On each item, -the
student was required to decide if the conclusion was valid or
invalid, or if there was not enough information to decide. The
number of items ranged from 22 to 40. -

On two of the three tests, -the variable NEGPl entered the )
regression equation on the second step, with an average,R? value
of .73. The variables WORD and NEGP2 also entered consistently
in the first six steps. Although the positions of each varia-
ble changed on each test, a relatively high amount of variance
in the proportion correct was accounted for. Further evidence
for the effects of length variables (the variable WORD) was
obtained, as well as new evidence for variables reflecting the
frequencies of negations.

The results of the Jansson and Cook studies are encouraging.
R2 values in all three studies are respectable, and the repeated
occurrence of many of the same variables lends support to the
effects of syntax variables in many types of verbal problems.

Our discussion throughout has focused on verbal problems of
a routine nature. The question remains as to how syntax variables
affect the difficulty of non-routine verbal problems. Unfortu-
nately, there is almost no research on the role of syntax
variables in non-routine problems. It seems reasonable to
conjecture that a complex syntax will make any type of verbal
problem more difficuit to solve. Howaver, non-routine problems
tend to require higher cognitive processes:for solution, and
therefore other categories of task variables, such as structure
variables, may play a more important role.

=

Critique of the Linear Regression MNodel

The linear regression model previously discussed has shown
promise as a research tool to identify which task varisbles
affect problem difficulty. The technique is based on the
assumption that the relationship between seletted task variables
and problem difficulty is linear. While the results of some

(%)
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‘Table 2.5 Definitions of Variables Desaéibing-SimpZe Deductive Arguments

-

WRDP1:
W?l[PZ:

A count of 1 for each word in the first premise,

The
the

The
the

The

The

'The

ratio of the nuuber of words in premise 1 to
number of words in premise 2,

average word length in number of letters in
total argument.

number of negations in the first premise.
number of negations in the second premise,

total number of negations in the conclusion

of the argument,

The

total number of negations in the entire

argument.
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studies suggest that a linear model fits the dats reasonably well, |
it is not clear that a different model would not fit the data y
better. \ . a e

Since the linear regression model was first applied to verbal

' problems in mathematics, it has fallen short of being an accept-

ably precise technique for pre¢{ct problem-solving behavior.

This may be due ‘to the inappropriateness of the linear model in

explaining the relationship of task variables to problem difficulty,

or to the lack of methodological paradigms and inconsistencies in

the use of the model. Furthermore, research in problem solving has _
shown that a large varie:y of task variables (content, context, .
syntax, structure, étc.), as well as subject and situation varia- ‘
bles, have an influerce on problem solving. It is unreasonable to

expect that a model which does not take all of these variables

into accaunt will be able to predict accurately problem-solving

success aeross subject populations and across problem types. 1Im -

a study dealing with only one category of task variable, say

variables of syntax, the total amount of variance accounted for

"in the proportion correct may reasonably be much less than 100

percent. If it does approach 100 percent, this may be due to
inadvertent correlations in the problems themselves between syntax
variables and other task variables fsee below). The real value of
the linear regression model, then, may be in its use to determine
the relative importance of major categories of variables, or the
refative importance of specific variables within a particular cate-
gory. Thus, the development of a complete linear regression model
may not be a valuable undertaking.

Another concern with the linear regression model the lack
of independence of the variables that have been investigated.
Although some #ariables are independent of each other in terms
of the method used to quantify them, they are ¢ften not’ independent
conceptually. For example, the length variable is cléarly related
to a8 number of variables which also are quantified by elemental

‘counts. It is also very probably correlated with such norn-syntax

variables as the number of givens and the number of steps to solu- -
tion. The significance in the regression equation of the length
variable alone does not convey a great deal of information in
helping to understand the problem-solving process or contributing

to the development of a model of problem-solving behavior. The
important question here is, '"What particular aspects of problem
length make it important in the problem-solving process?" Ques-
tions of this nature have not, as yet, been addressed in linear
regression studies. It is important to create problem sets in:

which particular syntax variables are intentionally held constant
and others intentionally varied, in order to approach such questions.
It is also important to note that the linear regression model makes
no provision for interactions among the variables. These can be
incorporated only by defining new task variables as (non-linear)
functions of previously defined variables,»and then carrying out

a new linear regression.
. “a
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The ute of cha\;egrcssion nndnl as indicstor/ef éhc relative
importance of specific variables could also be improved. _Invcltigg-
tions using comparable populqtions would be helpful in refining the
regression coefficients to form a model that is acceptable for a
particular population. More comprehensiv studies acrosg grade
levels could help to establish which variables are the m{st impor-
tant for each level of student development. This infor::tion would
be most useful in desifning instructional material. The use of
similar problem sets by different, researchers wauld P rm;t greater

1
I

N . . - !
Additional applications of the lineJr regression model itself
might include the use of different dependent variablex (puch as
latency of response) and the propoétion £ the use of orrect

- method, in addition to the proportion of |correct ers. ‘Differ-

ent criteria for establishing the importance of each. variable should
also be examined, such as the sizeiof the regression}coefficient,
the size of the part correlation coefficient, the order of entry
into the regression :i%ation, the contribution to th# total vari-

" ance in the proportion correct, and size of the drop in RZ ‘caused

by removing the variablé from the regression equatiep.

To sumarize, the linear regression model is val\;able for
identifying task variables assoceiated with problem difficulty,
but yields little information omn how the variable 1n question
affects the difficulty of the problem. ~

Syntax Variables and Instruction

It seems reasonable to expect-that instruction designed to
help children with syntax and semantics could reduce the diffi-
culty of many problems. Research on this hypothesis has been
conducted for many years. A number of studies showed that
instruction in the interpretation of specific mathematical terms
produced significant gains in problem~solving ability (Dresher,

-1934; Johnson, 1944). Fewer studies have been directly concerned

with instruction in syntax. In one study, Sax and Ottina (1958)
demonstrated that specific instruction in syntax resulted in
improvement in mathematics achievement for seventh. graders who
had no previous training in mathematics in their earlier school-

ing.

At this point, it should be emphasized that any discussion
of training in syntax must include-a discussion of reading instruc-
tion, for it is clear that the ability to understand the meanings
of words and the syntax of written statements is essential in
learning to read all types of material (Aiken, 1972). However,

-as Henney (1971) notes, students often find reading mathematics

to be different and, in general, more difficult than reading
other materials. Spencer and Russell (1960) have pointed out
. . &.'



‘ that students experience difficulty in- ruding arithmetic material
beenuse. (1) the names of certajin materials are confusing; (2)
number languages which are patterned differently from the decimal
system are used; (3) the language of expressed fractions and ratios
is complicated; (4) charts and other diagrams are frequently con-
fusing; and (5) the reading of enmputational procedures require:
specialized skills.

The question|o£{uhec er reading instructica, particularly
reading instruction in mathematics, can have a positive effect
on the ability to understand mathematics and mathematics prob-
lems has only recently been investigated. *Perhaps due to emphasis
in the modern mathematics programs of the early 1960s on increased
use of symbolism and verbal explena:iens, a mmber of studies were
conducted to determine the effeetiveness of reading instruction on
mathematical achievement and’ problem solving. Gilmary (1967)
found that elementary school children in an experimental group
who received instruction in both reading and arithmetic gained
one~third of a grade more on the Metropolitan Achievement Test—
Arithmetic than did a control %roup which received instruction
in arithmetic only. The results were even more pronouncad, favor-
ing the experimental group, when differences in I.Q. were controlled
statistically,

Howeveg, in a later study, Henney (1969) tested the effects
of 18 lessons on reading verbal problems with 179 fourth-grade
students. Approximately half of this group receiwed the lessons
over a8 nine-week period. During the same time period on alter-
nate days, the other half of the students studied and solved
verbal problems in any way that they chose, under the supervision
of the same teacher. The results showed significant gains for
both groups over the nine-week period, but no significant differ-
ences were found between the groups on the posttest.

A few recent studies have examined specific instructional
techniques. Earp (1969) noted that verbal problems which have
a high conceptual density factor include three types of symbolic
meanings--verbal, numerical, and literal--within a single problem
task. He maintains that three kinds of reading adjustments are
required (that is, adjustments from the reading pattern used in
ordinary English prose): (1) adjustment to a slower rate than
with narrative materials; (2) varied eye movements, including
some regressions; and (3) reading with an attitude of aggressive-
- ness and thoroughness.

A number of suggestions for helping students‘read word prob-
lems have emerged from the literature. Earp (1970), for example,
has suggested five steps in reading verbal problems:

(1) Read first to visualize the overall situationm.

(2) Read again to get the specific facts.
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:(3) Note difficult vaea&lm'g and concepts.
(4) Reread to help plan the solution.

(5) Reread the problem-to check the procedure and solution.
The effectiveness of the use of the above five steps was tested in
the study by Barnett (1974) described in the previous sectiom.

Several other attempts have been made to design instructional
procedures to help children read mathematics materials. Taschow
(1969) suggests a remedial-preventive program in reading mathema-
tics. Students are first given a Group Informal Reading Inventory
to determine which students have difficulty with mathematical
reading. 1In the second phase, a five-~step program called the
Directed Reading Activity in Algebra is given to each child. The
five-step DRA consists of: (1) readiness, (2) guided silent read-
ing, (3) questions, (4) oral reading when needed, and (5) applica-
tion. /While this program does not provide instruction in specific
syntax variables, the exposure and practice with reading mathematics
materials can help students learn to cope with the more difficult
syntax structure found in verbal problems. : '

Another program offers more specific instruction in process-
ing syntactic structure. Dahmus (1970) suggests a "direct-pure-
piecemeal-complete'" (DPPC) approach to solving verbal problems.

In this method, the student is encouraged to translate the data
presented in the problem into mathematical sentences, by concen-
trating on a few words at a time. He or she gradually learms to
put together the "piecemeal" mathematical statements into equationms,
and, finally, into systems of equations. It is clear that the
ability to translate data in problem statements into mathematical

' symbols is one of the most important aspects of general problem-

solving ability. It seems that it is also one of the most diffi-
cult abilities to cultivate. Several procedures similar to the
one above have been suggested, but it is not yet clear that any
of these procedures are effective across a variety of student,
populations and problem types.

In conclusion, two points should be noted. First, the ability
to process English syntax is crucial to reading ability. The
studies discussed above suggest that instruction in syntax results
in improved reading comprehension. Secondly, the ability to read
and the ability to engage successfuXly in mathematical problem
polving are directly related. As Aiken notes,

.o o o Instruction in reading in general or the reading
of mathematics in particular improves performance in
the latfter subject. It seems reasonable that attempt-
ing to cultivate the skill of reading carefully and
analytically in order to note details and understand
meanings, thinking about what one 1s reading, and
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translating vhat is r into 3pccini synbols would improve : yh
performance' on many types of mathematical problems. (Aiken, )
1972, p. 18) .

L

What {s not clear at this point is the relstive importance of the
various syntax variables to the design of instructional materisl.

It is hoped that future regearch will address this question through
coordinated investigations to vary systematically individual syntax s
variables in a variety of verbal procblem settings.

2. The Clas§1fic§tion and Definition
of Syntax Variables:

A Verbal Information Processing Model

( ' $

In the previous section, a number of investigations of the role

‘of syntax variables in verbal problem solving have been considered.
It may now be productive to examine in more detail how syntax para—
meters are incorporated into the hierarchy of task variables intro-
duced in Chapter I (Figure 1l.1). The purpose of that hierarchy is
to suggest the relationship between Polya's stages of problem.solv-
ing and the types of task variables,and between the types of task
variables and the levels of task analysis. Here we shall consider
syntax variables with respect to the detailed sequence of processes
used by the problem solver.

Figure 2.1 -proposes a verbal information processing model on
which the present section is based. The model magnifies a portion
of Figure 1.1, expanding the "understanding the problem' stage des-
cribed by Polya. We shall then redefine the more significant syntax
variables discussed in the literature and examine them in relacion
to the proposed model.

When the problem solver is confronted with a problem statement,
he or she enters a transiation or verbal processing stage, which can
be thought of as divided into two parts. During the decoding sub-
stage, the problem solver interprets the problem statement. This
is followed by an encoding substage, where the data contained in
the problem statement are transformed into a usable form (for
example, mathematical sentences) that assists with the problem
solution. This process of decoding and encoding enables the prob-
lem solver to translate the original words, phrases, numerals, and
symbols into meaningful expressions, before proceeding to the com-
putational stage of problem solving.

It is in the decoding substage that the problem solver must
process syntactic and semantic information; thus, syntax variables
are expected to affect the verbal problem-solving process at the
surface level, during the decoding substage. We suggest that this
substage may be usefully thought of as composed of three separate
processes which interact with each other as the problem solver
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Figure 2.1 Problem Syntar and Information Procsssing
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reads through the problem statemant: recall from long-term memory,
storage in and recall from short-term memory, and reorganisation
of informatien.

As each word or phrase in the problem statement is encountered,
the problem solver must rezall and comprehend its meaning in its
grammatical context, drawing on long-term memory. Complicated or
unfamiliar grammatical structures may make this recall and compre-~
hension more difficult. Lengthy problems contain more words, more
gramnatical structures, and often quantitatively more information,
necessitating greater use of recall and comprehension from long-
term memory. The formats of symbols or numerals which are unusual
or unfamiliar may cause momentary pauses in language processing,
pending recognition (access to long-term memory) or comversion to
more familiar formats.

Concomitantly with recall and comprehension, the problem
solver may store selected items of information in short-term memory
for future use. It should be noted here that for the purpose of
examining task variables, the term 'short-term memory" refers to
storage of information contained in the problem statement at hand,
while "long~term memory" refers to knowledge possessed prior to
encountering the given problem. The usage of these terms is there-
fore slightly different from that found in the psychological liter-
ature.

As the problem solver reads the problem statement, information
may be stored in a variety of ways, as illustrated in the following
example: :

2.3 Ms. Fuller drives due north for 100 kilometers,
and then due east for 358 kilometers tc Inter-
national Airport. She then takes a plane which
flies in a straight line back to her home where
she started her trip. How many miles did the '
plane fly (with respect to the ground) between ‘
International Airport and Ms. Fuller's home?

Reading this problem will elicit information from long-term memory,
and produce a number of mental images which are stored in short-
term memory. These images may be augmented as more information

is processed. For some problem solvers, '"due north ... and then
due east' may produce an image of a right triangle. The numbers
"100" and "358" may be stored as numerals, or even added to the
triangle image as labels, Mathematical terms such as "kilometers'
may also be stored in short-term memory, along with the relation-
ships between items of data and quantifiers. For other problem
solvers, the words "due ‘morth ... and then due east' may suggest

a perpendicular relationship of two vectorc, without generating
the cliear mental image of a triangle. This relationship may or

may not trigger the recall of the Pythagorean Theorem from long-
term memizi;##;ziis also possible that the presence of the numbers



.

=49~

100" and "358" could be noted in short-term asmory, but not the

actual numbers themselves--in this situation, the problem solver
night scan the problem statement again to pick out “he numhors
when they are later needed in a mathematical equation.

Consider a second example:

2.4 Five ogk trees dropped 37, 56, 108, 87, and 25
acorns respectively on Monday, and 45, §3, 68, 40,
and 38 acormg respectively on Tuesday. Based on
this group of five oak trees, what is the average
number of acorns dropped by an oak tree during
this two-day period?

In this problem it is likely that many problem solvers would not
actually form and store meutal images of the action specified in
the problem statement--i.e., acorns being dropped by oak trees.
Some items of information might be stored directly, such as the
key word "average." The presence of numbers such as "37, 56, ..."
might be noted, without their actual values being stored, The
term "five" might be stored as a word, or more likely as the
translated numeral "5." In short, it is clear that the kinds

of information which are stored in short-term memory, and'the
form of the information stored, will vary widely from individual
to individual.

Again, some generalizations about tgg effects-of syntax
varisbles can be made. Lengthy problems which contain many items
of information may place considerable demand on short-term memory.
The problem solver may have difficulty keeping track of all the
data or deciding which items will be needed and should be stored.
Grammatical structure variables, such as the number of pronouns,
may place additional demands on short-term memory, since the
problem solver must remember to which noun each pronoun refers.

Finally, in many problems the data may be presented in a
sequence which requires reorganization as the information is
stored, into more usable or recognizable forms. The position
of the question sentence may influence how the given information
is initislly stored in short-tefs memory, and whether or not
subsequent reorganization takes place. Thus the model in Figure
2.1 includes "reorganization" processes as a third and crucial
component in the decoding substage. The reorganization process
may take place before the dats are stored in short-term memory
or, as more information is accumulated, whenever it becomes
useful to rearrange the information in short-term memory.
Reorganization, as well as recall-comprehension and storage, is
not necessarily a conscious, willful action on the part of the
problem solver; it may take place in a rapid, nearly automatic
fashion,
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After interpreting and decoding the problam statement, the
problem solver may begin a structural analysis of the task, attempt-
ing to encode the relevant data into a representation suitable for
solution by algoritimic procedures. During or after this encoding
substage, the problem solver may discover a contradiction, error,
or difficulty; or insufficient information may prevent the comple-
tion of the encoding process. Any of these happenstances may
necessitate a return to the decoding substage, where the problem
solver will reread and reprocess the problem statement to correct
any discrepancies, reorgaiize away any diffieuikies, and store
additional needed information.

Thus the verbal processing stage is characterized by dynamic
mental activity, involving a great deal of movement batween the
decoding and encoding substages. Within the decoding substage,
there is similarly considerable movement among recall-comprehension,
reorganization, and short-term memory., These three processes occur
during the act of reading the problem statement, not necessarily in
any particular order after the entire statement has been read.

® b

During the decoding substage, syntax variables influence the
amount and complexity of the processing that is required. It is
clear that content and context variables, discussed in Chapter I1I,
will influence this substage as well. For example, familiarity
with the meanings of mathematical terms facilitates recall-
comprehension from long-term memory, as well as storage in and
access to short—-term memory.

The following problems illustrate certain qualitative aspects
of the verbal information processing model.

2.5 If the hypoteruse of an isosceles right triangle
ig 16 om, what is the sum of the lengths of the
two legs?

In Problem 2.5, interpretations of the mathematical terms
"hypotenuse,” "isoscelgs," "right,” "triangle,” "cm,"” and "legs"
may be recalled from long-term memory, and reorganized to form a
mental image of the overall situation. Alternatively, some of
these terms may trigger the recall from long-term memory of the
Pythagorean Theorem. Many of these terms, and others such as
116" and "sum," may be stored in short-term memory and used later
in the encoding stage. Since the problem cannot be solved directly
from the Pythagorean formula by treating the hypotenuse as the
unknown variable, some reorganization of the data will eventually
be necessary. 1In this problem, mathematical content variables
(mathematical topic, key words, and mathematical vocabulary)
directly and importantly affect the decoding substage. With
respect to syntaxr variables, the problem length is comparatively
short, and the major complexity of grammatical structure is the
nesting of the prepositional phrases in the question sentence.

(e



2.8 Beth lives on the cormar of a square oity blook, and
her friend Nancy lives on an adjacent corner of the
same block. Naney's friend Sue lives on the other
corner adjaeent to Naney. The length of the diagonal
from Beth's house to Sue's house is 280 meters. How
far does Beth have to walk to Sue's hoasc tf* she must
stop to pick up Nanoy on her uay? ‘

Although Prcblem 2.6 requires the same mathematical procedures
as Problem 2.5, its syntax is more complex. The very first indepen-
dent clause contains nested prepositional phrases. Many of the
words which must-be recalled from long=term memory are relational
. terms (such as "adjacent"), which must be interpreted in their
proper syntactic context., This problem also contains several action
verbs which must be processed and stored for use during the encoding
stage. The pronouns "'she" and “her" may cause mot tary pauses
while the problem solver looks back or recalls i rt~term .
memory the nouns which they modify. Some of the . _anical mathe- —~—
matical vocabulary is absent, which might for this problem delay
the needed access to the Pythagorean Theorem in long-term memory.

Problem 2.7 represents one version of a well-known non-routine

problem, 1Its structure will be examined in more detail in Chapter
Iv.

2.7 Three missionaries and three earmibals are on one
bank of a river, with a rowboat that will hold at
most two people. How can they oross to the other
side of the river, in such a manmer that mission-
aries are never outvumbered by cannibals on either
riverbank?

Again in this problem, interpretations of terms such as "mission-
aries," "cannibals,”" "rowboat," "outnumbered," etc., may be
recalled from long-term memory. Although the problem can be
solved without actually understanding the meanings of the words
"missionaries"” or '"cannibals," knowledge of these terms may per-
mit more effective storage of the rule that cannibals must never
outnumber missionaries. This rule must be held in short-term
memery, and probably accessed ceveral times during the course of
problem solving.

Figure 2.1 proposes a rather naive, idealized version of the
process of decoding the problem statement, which we have examined
partially and qualitatively for a few problems. 1In the remainder
of this section we shall discuss in detail five categories of
syntax variables which have been studied in the literature in
the previous section, and attempt to understand using the model
how they are most likely to affect problem difficulty. In some
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cases, this will guide us towards preferred definitions or suggested
redefinitions of the variables for purposes of research.

Length Variables

Table 2.2 contains a list of 18 variables of length which have
been investigated in the literature. Let us discuss these variables
with respect to the decoding processes in Figure 2.1.

. Lengthy problems usually contain more items of information and
more information not directly related to the problem solution. As
the problem lenfith increases, greater stress may be placed on short-
term memory. ‘If the problem solver is not able to hold all of the -
information in an accessible form in short-term memory, repeated
processing of the problem statement may be necessary, or additionsl
reorganization may be required simply for the purpose of retaining
the information. The effgrt to try to "hold" all of the present
information may result in a loss of directionm, or foster a feeling
of confusion or frustration.

Problem length has been studied by means of the number of words,
phrases, or sentences in the problem statement, as well as by means.
of the number of characters or letters and the mumber of syllables.
It seems apparent that the number of character, letters, or sylla-
bles ought not to affect directly the stress on short-term memory,
since words and phrases are usually rememberéd without the separate
and distinct processing of each individual character or syllable.
Thus the variables LETTRS, CHRCTR, and SYLBLS probably do not
directly describe stress on short-term memory. Similarly, it is
extremely rare for units as small as individual characters or
symbols to be reorganized during the course of ptoblem solving,
or individually to evoke recall from long-term memory &nd compre-
hension, Thus, the verbal processing model suggests that these
variables are i{gappropriate for the prediction of problem diffi-
culty, being associated with it only by virtue of their correlation
with other length variables.

‘ /

The variables WORDS, LENGTH, WRDNUM, WRDGTS, and WRDSYM are all
versions-of word counts, with various combinations of symbols,
digits, and numerals added for completeness., Length variables
of this type are appropriate for the prediction of problem diffi-
culty under the assumption that each word represents a syntactic
and semantic processing unit which can be stored in short-term
memory or evoke recall from long-term memory. It is evident that
this assumption is a kind of approximation, for in many cases it
is a phrase which functions as a unit in this sense (the variable
WORDS takes this into account to the extent of assigning a count
of "1" to a group of words which would appear in the dictionary as
a single entry). From the standpoint of syntactic and semantic
units of processing, it seems most appropriate to count each numeral

L5
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as equivalent to a single word (rather than- to count each digit or

to “count the number of words in the word form of the numeral). Simi-
larly it would seem most appropriate to count each symbol (such as §)
as a single word.

Often, but not always, a problem with many sentences is more
difficult than a problem with only one or two sentences. This
variable (SENT) is not simply another way of cuunting words, but
is based on the assumption that each sentenc: contains at least
one complete idea, action sequence, or organizational relation-
ship. Indeed, the problem solver may treat the ends of whole
sentences as natural places to pause {even momentarily) to reflect

‘on what has been read. The new idea may then be reorganized and

integrated with other ideas 6T action sequences from other sen-
tences, before more material is read. Thus, SENT would be expected
to affect problem difficulty principally through the increased load
on the reorganization of information.

However, inversely related to the "number of sentences"

variable SENT is the "average sentence length" variable SENTLN.

1f, indeed, sentences are considered to be the appropriate units
for reorganization of information, it is reasonable to expect that
the longer the unit, the more items of irformation it may contain,
the greater the load on short-term memory prior to reorganizationm,
and the more complex the reorganization that is necessary. Carry-
ing this idea one step farther, the LGMXST variable is defined on
the assumption that a protlem may be as difficult as its Zongest |

srnfnce .

The variable LGNUWD is the length variable that reflects
the "distance'" between the first and last numeral in the problem
statement. The rationale for this definition rests op the assump-
tion that it may be more difficult to solve a problem when the
data are spread far apart, since in this situation it is more _
likeiy that the problem solver will lose track of how the data
fit together. This definition is appealing in terms of the
verbal processing model, bec: :se 'it refers directly to the
reorganization process in its raxionale.

Finally, the average word length variable AVGWDL is intended

‘to be indicative of overall word comprehension. The ability to

recycle and process words with many letters develops gradually
as the child matures; thus, this variable may affect problem
difficulty, particularly for young children, by placing greater
strain on the recall/comprehension process. For older children
and adults the effect is likely to be much less pronounced,\.or
in some cases negligible. ' .

/

To summarize, the verbal processing model (Figure 2.1) suggests

the following hypotheses with respect to length variables: (a)
variables describing the number of words and/or symbols affect

problem difficulty due to the increased load on short-term memory;
n : £
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(b) variables describing average word length or:vocabulary difficulty Tl
affect problem difficulty due to the increased load on long-term

memory and comprehension; (c).variables describing the number of

sentences and the degree of separation of data within the problem

affect problem difficulty due to the increased load on the reorgan-

{zation of information; while (d) variables describing the number

of letters or characters are inappropriate, being associated with

: problem difficulty only by virtue of their correlation with the

length variables.
Grammatical Strmicture Variables

Although problem length has been showa to be an important para-
meter in the study of problem difficulty, length variables rre the
most superficlal of the syntax variables. We now turn our attention
to syntax variables which reflect the grammatical complexity of prob-
lem statements.

Variables describing the numbers and types of clauses and phrases
are included in Table 2.3. In terms of the verbal processing model,
variables such as the number of main clauses (MAINCL), the number of
subordinate clauses (SUBCL), and the number of prepositional phrases
PREPHR) would principally affect the process of reorganization of
information. Main clauses, containing subject and verb, represent
the main idea or main action sequences in the problem statement.
Subordinate clauses represent ideas which are secondary in a gram-
matical sense, although not necessarily in a mathematical sense.

The problem solver is hypothesized to process smaller "units" such
as words into short-term memory and reconstruct larger "units"
through re: -~ -anization. With this interpretation, the fact that
variables . n as MAINCL and SUBCL do not enter nearly as importantly
as LENGTH (see Table 2.4) into the regression equation seems to imply
that the increased difficulty of longer problem statements results
from greater load on short-term memory, rather than from greater need
for the reorganization of information. It should also be noted that
an increase in the number of clauses may be associated with increased
mathematical complexity, which is not a syntax variable but will
obviously affect problem difficulty.

The following two problems, at two different levels of diffi~
culty, illustrate this last point.

2.8 ( The Easter Bunny hid 10 dozen eggs ) but ( the
ehildren could only find 20 of them. ) (How many
eggs were ngt? J.

2.9 ( Larry Bonecrusher weighed 420 pounds. ) (He ate
15 pounds of chocolates. ) If (( he gained 8 pounds, ))
(by what percent did he increase his body weight? )
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In the above examples, single parentheses indicate main clauses,
double parentheses indicate subordinate clauses, and prepositional
phrases are underlined. The counts for these two problems are
shown below.

Variable ] Problem 2.8  Problem 2.9

MAINCL 3

SUBCL 0

WDMAIN (number of words in o 20 22
the main clauses)

SUBLEN (number of words in 0 4
sub. clauses)

CLAUSE (total number of clauses) 3

PREPHR 1.

The variable counts above can also be used to generate other
variables, particularly those involving ratios. For example, AVGCLS
(average main clause length) can be computed by taking the ratio of
WDMAIN tc MAINCL; i.e., AVGCLS = 20/3 = 7 for Problem 2.8 and 22/3 =
7 for Problem 2. 9.

While the values of the variables for Problem 2,9 are higher
than for Problem 2,8, the greater difficulty of Problem 2.9 can be
accounted for without reference to these variables. For example,
Problem 2.9 contains irrelevant numerical. information and utilizes
the concept of percent, while Problem 2.8 does not.

Parts of speech variables arz also defined in Table 2.3. As -
the problem solver reads through the problem statement, the mean-
ings of nouns and verbs must be recalled from long-term memory,
and those that appear important in reaching a solution must be
retained in short-term memory. Adjectives and adverbs may provide
the context to help the problem solver decide which nouns and verbs
are important; however, it is often the case that they are distrac-
tors which do not supply useful informastion, but merely increase
the length of the problem and increase its complexity. Consider
the following two problems:

/?

2.10 The brown horse can run 5 miles per hour faster
than the black horse, which can run 10 miles per
hour faster than the old grey mare. If the old
grey mare can run at 10 miles per hour, how fast
ean the brown horse run?

2.11 The large, green spotted dragon ran quickly up to
the castle and demanded that the fair damsel be
given to him to eat. Sir Dull, the boring Knight,
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killed five of his last eleven dragons, while Sir
Oscar killed seven‘of his last 15 dragons. Based
on his record, which knight has the greater prob-
ability of killing the large green dragon? '

In Problem 2.10, the adjectives "brown,” "black," ‘and "grey" are
necessary to distinguish the horses frcm each other. While the adjec-
tive "01d" is not necessary it does help to reinforce the fact that
the grey mere is the slowest. The adverb "faster" helps describe the
action of the problem and provides an item of information essential
to the problem's structure. Again it ig apparent that there is con-
siderable interaction among the task variable categories of syntax,
context,: .ad structure.’ In Problem 2.71, the adjectives and adverbs
"large," "green,” "spotted," "fair," "boring," and "quickly" provide
no usefi.l. information and place greater strain on short-term memory
unnecessarily. These adjectives and adverbs do not interact with
the problem structure. They may, however, serve a useful purpose
in stimulating the problem solver's interest in the problem (see
Chapter III).

In view of the two' situations illustrated in the above problems,
it is difficult even to decide in which direction the correlation
between the variables ADVERBS and ADJECTIVES and problex difficulty
will be. Here again, we find the major limitations of the linear
regrassion model.

Segalla (1973) attempted to quantify a number of somewhat sub-
jective aspects of problem statements. To measure the "richness"
of a problem statement, he hypothesized that a high NOUN TC ADJECTIVE
RATIO would be a characteristic of more difficult problems, since
the problem statement would tend to be barrem of information. How~
ever, it is just as possible that a problem with a low NOUN TO
ADJECTIVE RATIO would contain many unnecessary descriptors which
would function as distractors, making the problem more difficult.
This variable therefore seems inappropriate to a verbal processing
model. 4

A particularly interesting variable studied by Segalla is the
PRONOUN TO NOUN -RATIO. This variable is a measure of the indirect-
ness of a problem. In statements which contain many pronouns but
few nouns, it is difficult to remember which nouns are referred to
by which pronouns. This places strain on shért-term memory, slowing
down verbal processing and necessitating rereading. More movement
among the three processes in Figure 2.1 may be necessary. Problem

2.2, for example, has a high "indirectness" index.

Thus far, we have considered syntax variables that describe
only the surface structure of sentences. However, Ruddell (1964)
noted that variables which employ element counts, such as the
LENGTH variable or any of the '"parts of speech" variables, have
been successful in accounting for only 26 to 51 percent of the
variance in reading comprehension scores. It is apparent that

a syntax variable which reflects more of the organizational .
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complexity of language structure might account for a significant portion
of the variance in problem difficulty, In 1970, Loftus def such a
variable, based on a measure of '"depth" proposed by Yngve (1960), In
the Yngve model, each sentence is broken down into its constituent parts
by a binary rewrite rule, In the resulting "phrase structure tree dia-
gram,"” & number is assigned to each word, reflecting the level of
"embeddedness" of the word inm the sentence., These "Yngve numbers" -are
determined by the number of left branches leading to each word in the’
sentence. Figure 2,2 illustrates the "phrase structure tree diagram"
for the sentence "The best students are always very punctual,"”

Yngve hypothesizes that this concept of depth is a measure of the - =
number of constituents of the sentence that the reader must keep in
short-term memory when considering each word, In this particular
example, the reader must recall that "best" preceded the noun
"students" gnd the verb phrase "are always very punctual', and therefore
it receive depth pf "2". However, after reading the word "best" the
reader will usually anticipate a noun and a predicate to follow, since
this is a familfar pattern in English language structure. The depths
of the words "students' and "are" are therefore not as great as the .
depth for "best," ' y

The validity of the use of ¥Yngve's measure has been supported in
several studies, and Yngve himself was successful in applying his model
to algebraic sentences. However, his results fere not nearly as valid
when applied to ordinary sentences in English. Rohrman (1968) and
Perfetti (1969) noted difficulties associated with coding the depth
of a sentence, and the results of their investigations do not support
the ¥ngve hypothesis. One prohlem is that, for some sentences, more
than one structure tree may b ossible, resulting in a different mean
depth for each, Since there does not exist an explicit set of rules
for determining the numbers assigned to the words of a sentence, the
question of reliability becomes significant.

Although the difficulties cited above imply that the Yngve measure
of depth may be of questionable value in recall tasks, Loftus (1970)
and Segalla (1973) attempted to show that the Yngve hypothesis may
have some value in determining the relationship of syntax structure
to word problem difficulty. 1In each of these studies, the investi~
gators overcame the problems of ambiguous sentences and inter-
experimenter reliability by choosing sentences carefully and compar-
ing their "sentence trees'" with those obtained by experts in psycho-
linguistics. 1In each case, the results for each problem correlated
well with those obtained by the original researchers,

The syntax variable DEPTH can be defined as it was in the Loftus
study by the following procedure: (1) compute the mean of the Yngve
numbers for each sentence in the problem; and (2) the highest value
of this set of Yngve "means' is taken as a measure of syntactic com-
plexity, DEPTH, of the problem. The procedure for computing this
variable is illustrated with the following example., The reader is
invited to quantify the DEPTH variable for this problem and compare
the results with those obtained by Leftus.

~1
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Figure 2.2 Computation of Yngve Numbers

The best students are always very punctual,
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2.12 Jim has 40 bottles. KXen has 30 bottles. They
have how many bottles together? )

In the first sehtence, the Yngve numbers are 1, 1, 1, 0, yielding a
mean of .75. The thixd sentence is characterized by the Yngve numbers
1, 1, 3, 2, 1, 0, with a mean of 1.33. The number 1.33 is therefore
taken as the measure of DEPTH for this problenm.

It is clear from this procedure that the definition of the DEPTH
variable is based on the assumption that a problem is as complex as
its most complex sentence., This notion of "embeddedness' is essen-
tially based on short-term memory. It would seem, however, that DEPTH
represents only one dimension of grammatical complexity, since it does
not reflect the types of words present in the problem statement,

Another technique for representing syntactic complexity has been
suggested by Botel, Dawkins, and Granowski (1973). Their formula for
computing syntactic complexity is based on a theory of transforma-
tional grammar in which complex sentences are considered to be
derived from changing and combining underlying structures such as
simple sentences. Like the Yngve measure, the Botel, Dawkins, and
Granowskl formula yields a numerical coefficient for each sentence,
but the latter formula is more reliable and inclusive., Methods for
computing the syntactic complexity coefficient and implications for
researchers are discussed in detail by Goldin and Caldwell in Chapter
VI. . :

To summarize, the verbal processing model suggests the following
hypotheses with respect to grammatical structure variables: (a)
variables describing the number of clauses and prepositional phrases
affect problem difficulty due to the increased load on the reorgani-
zation of information; (b) the effects of different parts of speech
depend on whether the information is essential or inessential to the
problem solution and thus no clear effect is anticipated; and (c)
variables describing syntactic complexity (e.g., DEPTH) affect prob-
lem difficulty due to the increased load in short-term memory.

Variables Related to Numerals and Mathematical Symbols

It is obvious that in mathematical problem solving the numbers
and symbols contained in the problem statement are of great impor-
tance, since these are the data that learners must manipulate to
reach a solution. What 1is not so obvious is the relationship, if
any, of the syntax of the numbers and symbols to problem difficulty.
A step~wise linear regression analysis of the effects of the form
of numbers and symbols has not been done in any of the major studies
that have employed this technique.

Syntax variables describing the number of digits, numerals and
symbols have already been considered as components of various length
variables. The question remains as to which form of these variables
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is likely to most affect problem difficulty based on Figure 2.1.
Most problem solvers are exposed to numbers in numeral form much
more often than in English form. In the encoding stage of verbal
processing, numerals (and not English words) are placed together

in mathematical sentences. It would seem therefore that word prob~
lems which contain numbers in numeral form may require less process-
ing, and are more readily recognizable. Numbers in word form must
be recalled and translated into numerals before they can be used in
the later stages of the problem~-solving process,

The relationship of symbol form to problem difficulty may like-
wise depend on the extent to which the problem solver is familiar
with the symbols used. If a particular symbol is new to the problem
solver, recall of its meaning may take longer and storage in short-
term memory may be slower than if the symbol had appeared in the
problem in written form. In actual practice, however, the symbols
used in linear regression studies (such as § and %) have been
familiar to the problem solvers,

Several number and symbol form variables can be defined by taking
combirations of the variables in Table 2.6 (Tripp, 1972). For example,
consider the following problem:

2.13 At a sale, three children received a 10% discount
on the purchase of a gift for their teacher. If
the gift cost the children 5 dollars, how much
was its original price?

Al

The word '"three" is a number that appears in word form, so the count
for NURD is 1. 10" and "5" are numbers that appear in the problem
statement in numeral form, so the count for WORAL is 2, The symbol
"Z" was used in the problem statement to replace the word "percent,"
yielding a WOSBL count of 1, Conversely, "dollars" is a word in the
problem statement that replaces the symbol "$", so SYMRD receives a
count of 1,

The definitions of these four variables indicate that NURD and
WORAL, as do WOSBL and SYMRD, measure the same factors but in
opposite directions. '

To summarize, the verbal processing model suggests that variables
describing the form of numerals and symbols will affect problem diffi-
culty based on the familiarity of the form to the problem solver, and
the similarity of the form to the form required for a mathematical
equation.

~7
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Table 2.6 Variables Desariding Number and Symbol Forms

1.

A count of 1 for each number in word form
which must be used to solve the problem or
serving as a distractor.

A count of 1 for each number in numeral form,

A count of 1 for each word in symbolic form

A count of 1 for each symbol in word form,
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Variables Desoribing the Question Sentence

An important part of any problem statement is the sentence or
phrase that contains the question to be answered. If the problem
solver does not understand the question, the problem will be mean-
ingless. Teachers have noted that students often find the correct
answer to the wrong problem; that is, their calculations are correct
but their answer is not what was asked for in the problem statement.
Syntax variables describing the form, length, and position of the
question sentence or phrase have been defined in order to observe
the effects on problem difficulty of variations in question sentence.
One kind of variable is the length of the question sentence. From
the standpoint of the verbal processing model, there is no obvious
reason to treat the length of the question sentence differently from
any other sentence length.

A few researchers have suggested that certain types of problems
may be more difficult if the question sentence contains one or more
nunerals than if no numerals are present in that sentence. It is
possible that the presence of numerals would distract the problem
solver from identifying the goal in the question sentence, encour-
aging instead the immediate processing of this information.

A third type of variable i{n this category relating to the organ-
ization of information is that of sequence. In problems which con-
tain several sentences, difficulty may be influenced by wliether the
question sentence appears first or last in the problem statement.
Similarly, for one-sentence problems the question may be dsked before
or after the data are presented. It is not clear whether the question
functions as an advanced organizer when presented in the beginning of
a problem. If it does, it may help the problem solver determine the
relevance of data and assist in storage in short—-term memory and in
reorganization. It is also possible, however, that the ''distance"
of the question from the end of the problem may cause the problem
solver to lose sight of the exact nature of the task.

The previous discussion suggests the definitions in Table 2.7.

The reader is invited to consider the following examples with

respect to QUFENL and QUESQ. For determining QUNLC, we shall consider the

entire problem as the question sentence. The counts for the above
variables will change if the variables are defined with respect to
the "question phrase”" rather than the "question sentence.”

2.14 How many more dollars will John need if a bike costs
850 and he has already saved 8357

2.15 John has 835. He wants to buy a bike that costs 850,
How many more dollars does he need?

~
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Table 2.7 Variables Describigg the Question Sentence

1.

NUMQS ¢

QUENL:

QUNLC:

QUESQ:

A count of 1 for each word in the question
sentence (a similar variable can be defined
for the number of words in the ‘question
phrase' for single sentence problems,

A cdﬁnt of 1 if the question sentence (or
phrase) contains a numeral. A count of 0
otherwise.

Another variable, QUNLC, can also be defined,
with a count of 1 for each numeral in the
question sentence.

A count of 1 if the question sentence (or
phrase) appears before the presentation of
the data. A count of 0 if the question
sentence (or phrase) appears at the end of
the problem statement (or follows the pre-
sententation of the data).
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2.28 If a blook of wood i8 § inches long by ? inches wide
by § inches thick, what is its surface area in square
tnches? .

2.17 In how many years will Mrs. Browm be § times as old
as her daughter? Mrs. Brown was 20 on her daughter's
second birthday.

Problem QUENL QUNLC QUESQ
2. 14 1 2 1
2.15 0 0 0
2.16 1 3 0
2.17 1 1 1

To summarize, from the standpoint of verbal processing it would
be expected that NUMQS should have no particular effect that has not
been already incorporated under length variables, and the QUENL and
QUESQ may affect the problem difficulty by making easier or more
difficult the process of reorganization of information.

Sequence Variables

The sequencing of information in problem statements has long
been known to contribute to problem difficulty. Problems with data
presented in the same order as they will be used to ‘reach a solution
tend to be easier than those in which the data are out of order.
Data in t.e proper order facilitate understanding of the relation-
ships in the problem statement and allow the problem solver to con-
struct relational mathematical expressions with minimum reorganiza-
tion.

In recent years, a number of researchers have used some form
of ORDER variable in linear regression studies (Loftus, 1970;
Segalla, 1973; Barmett, 1974). This variable has been defined both
as a dichotomous variable and as a whole-number-valued variable,
as in Table 2.8.

Brennan (1972) has suggested a different version of an ORDER
variable. The ORDER3 variable in Table 2.8 reflects the position
of the question statement with respect to the data interval. This
variable is similar to question sentence variables discussed pre-
viously.

The following examples illustrate the three ORDER variables.

2.18 A businessweman was agetting 23 miles per gallon of
gasoline. Changing her spark plugs reduced this by

&p



Table 2.8 Sequence Variables

ORDER1: A count of 0 is given if the numbers in the
statement of the problem appear in exactly
the same order as they are needed for solving
the problem, and a count of 1 otherwise.

ORDER2: The minimum number of permutations required
to change the sequence of the numbers in the
statement of the problem to the sequence
customarily required to solve the problem.

ORDER3: A count of 1 is given {f the data interval
is interrupted by the statement of the
question, A count of 0 {s given if the
data interval is not interrupted by the
question statement, (The data interval has
its end points on the first and last numerals.)
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10 percent. However, a carburetor tuns-up increased
that by § percent. What was her new mileage?

2.19 A grocer bought 17 doaen pears for $4.65. If 5 dosen
" spoiled, at what price per dozen must he gell the ,
remaining pears to muke a profit equaz to 3/8 of the

- total cost?
Problem - . ORDER1 ORDER2 ORDER3
2.18 0 0 0
2,19 1 2 1

Note that in Problem 2.19 the numeral $4.65 must be moved from the
second position of the four items of information (17, $4.65, 5, 3/5)
to the fourth position, since it is used last in the problem. There-
fore, the count for the ORDER2 variable is 2.

Order variables are not exclusively syntax variables, since
they involve comparison of the sequencing of information in the-
problem statement with the ideal sequence from the standpoint of
mathematical structure. They may affect the reorganization process
in the decoding stage, but their effects may also be due to effects
of prohlem structure on problem solving, thus extending beyond the
scope of the translation stage,

3. The Effects of Syntax on Problem—Snlvi_g,Processes'
Recommendations for Research

The effects of variation of problem syntax on the processes used
by problem solvers haye been studied very little (an exception is the
study by Hayes and Simon, 1975, describing effects of syntax and semantics
on the representations créated by subjects). Given two problems with
the same mathematical structure, let us hypothesize about how varia-
tions within each of the categories of syntax variables might affect
problem-solving processes., In a previous section, the role of
variables of length was discussed with respect to the verbal pro-
cessing model. The point was made that lengthy problems can place
stress on short-term memory in the decoding stage. We might there-
fore expect problem solvers to depend less on short-term memory in
lengthy problems than in short problems. It seems reasonable to
hypothesize that the changes®in processes used might include: the f
increased use of paper-and-pencil techniques to.record information;
the greater use of diagrams, tables, and/or graphs to help organize
the data; and, perhaps, the increased use of algebraic labels for
unknown quantities. Reading patterns might vary following an initial
reading of the problem statement (such as a greater tendency to
reread part or all of the problem, or increased skimming of the
problem statement to pick up individual items of informatiom), It
might be particularly interesting to investigate the effects of the
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appeararnce of a lengthy problem on the processea used to solve 1t.
That is, do the processes used to solve a Iengthier problem change
due to the actually greater amount of language processing necessary,
or does the mere appearance of & long problem influence how the prob-
- lem solver approaches it? ' ’ : |

*

Varying the number of sentences (the SENT variable) while keeping
the content, context, and mathematical, structure consgant might also.
produce differsmces in the processes used to solve word problems,
since the infdrmation in the problem statement would be contained -
in different size organizationalunits, For example, a problem with
one sentence might lead the preh em solver to construct a single
equation incorporating all the'r relevant data. A structurally similar
problem with several sentences (eRch containing an action sequence or
information item) might lead the problem solver to construct several
small equations or mathematical rélationships before ¢ombining them
into a single, all-encompessing equation,

3

Many of the above comments onythe possible relationship of varia-
tions in length to solution procesges apply to grammatical structure
variables as well. TFaced with a pgoblem having complex grammatical
struc .ure, the problem ‘solver is Jlikely to show Increased use of the
same aids .to short-term memory as iﬁ the case of lengthy problems.
However, a more interesting question to ask is whether there is a
relationship of the number or form &f the equations developed by the
problem solver tc¢ the amount of action .as measured by, say, the
VERBS variable), or to any of the other grammatical structure varia-
bles defined in Table 2.3.

The point was made earlier that |the pgosition of the question in
a problem task may influence the storpge of data in short-term memory.
If the appearance of the question sentence at the beginning of a problem
statement acts as an advanced organizer, this may be reflected in the
form of mathematical sentences used by the problem solver. Recent develop-
merts in instruments of protocol analysis could be of great value in de-
termining the relationship of the position of the question to the form of
equetion and method of solution employed.

: Speeuleting on possible changes in _pProcess as a result of changes

. in number and symbol formats is somewhat difficult. If the formats of
these two aspects of a problewn statement| are unfamiliar to the problem
solver, 1t is possible that He or she will write information expressed

in one form in a more familiar form. Fcr example, if the numbers are

presented in .a problem task in English fé{m, the problem soclver may

write them in numeral form while reading through the problem statement,

as an aid to short-term memory. -

. ‘/“_ - | \.\ .

Changes in the sequence of data are likely te influence the
sequence type or length of the equations develﬂged by the preoblem
solver., Information obtained by investigations gf this relationship
may lead to a better understanding of the nature pf the reorganization
'substage of the verbal processing phase. \

"\ ¢
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In order to investigate the effects of syntax on problem-solving
processes as suggested in this section, a reliable methovod of record-
ing and classifying such processes is evidently needed. Chapter

VIII.B of this book may be an imporcant step in developing such a
method.

-

4. Conclusions

In the previous discussion, an attempt has been made to (1)
establish the importance of syntax variables as a special class of
task variables related to verbal problem solving in mathematics; (2)
examine the current state of knuwledge based on linear regression in
syntax variable research; (3) suggest & verbsl processing model
compatible with the general problem-solving model shown in Chapter
I, which may help explain the role of syntax in the verbal processing
phase; (4) suggest some categories and subcategories of syntax varia-
bles for future research; and (5) propose some possible extensions of
syntax variables research to look at problem-solving processes as the
dependent variables.

The identification of the five major categories of -syntax varia-
bles (Length, Grammatical Structure, Numerals and Symbols, Question
Sentence, and Sequence) is based on the research to date, particularly
those studies that have employed the linear regression model., While
this technique has made a valuable contribution to the identification
of specific syntax variables that may contribute to verbal problem
difficulty, it may be time to progress beyond 1it.

. A purpose of this book is to demonstrate that describing task
variables by means of various categories is a useful procedure that
should help researchers gain information about the interrelationships
of different attributes of problem tasks. The relationship of specific
syntax variables to the other characteristics of verbal problem tasks
discussed in the following chapters needs intensive study across age
and ability groups. Of particular importance are studies that attempt
to determine directly the role of syntax variables in the decoding pro-
cess at the first stages of problem solving.

A commitment to the development of new research and methodologi~
cal paradigms on the part of researchers is of paramount importance.
In the opinion of this author, significant advancement in the field
of problem-solving research will only be possible if results can be
replicated and extended by coordinated series of investigations.

Such efforts imply -a commitment to common definitions, notation,
shared problem sets, and similar subject populations. The various
components of the verbal processing model suggested in Figure 2.1
may provide an organizational framework for a portion of these
efforts. -
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Content and Context Variables in Problem Tasks

by

Norman Webb
University of Wisconsin
Madison, Wisconsin

One purpose of this chapter is to identify differeat dimensions
across which the content and context of a task can vary. The cate-
gorization scheme is designed to be used by teachers and curriculum
specialists to analyze the range of problem-solving experiences
children are receiving, or should be receiving, in school.

A second purpose is to clarify the role which content and con-
text variables play in problem-solving research. It is essential
that content and context variables be well defined to increase the
validity and the generalizability of research findings. Small varia-
tions in the content or context of a task can result in large
variations in the solution process, and consequently in the findings
of a study. The categorization scheme for content and context varis-
bles should help researchers in designing research, selecting problems,
and interpreting their findings. Brownell and Stretch (1931) caution,

...the act of solving verbal problems in arithmetic is
exceedingly complicated and ... investigations which
oversimplify the process and attempt to measure a single
aspect of it without regard for other aspects are certain
to secure only partially valid results and to misrepre-
sent the true situation {p. 74).

The content of a problem is the mathematical substance of the task.
The four main subdivisions of content variables to be discussed in
this chapter-are: (1) variables describing the mathematical topie,
(2) variables describing the field of application, (3) variables describ-
ing the semantic content, and (4) variables describing the problem
elements. Here "semantic content” refers to the meanings of critical
words or phrases in the problem statement, such as keywords or technical
mathematical vocabulary. '"Problem elements" are phrases in the problem
statement which contain essential items of information such as givens,
allowed operations, and goals.

Where content refers to "substance of a problem,” the context
refers to the form of the problem statement. "Form'" is interpreted
very generally to include: (1) variables describing the problem
embodiment or representation, (2) variables describing the verbal
context or setting, and (3) variables describing the information
format.
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Certain boundaries have been set in this chapter between content/
context variables and other categories of task variables, . Both syntax
variables and content/context variables describe the problem statement.
Content and context variables tend to be classificatory in nature,
and describe the types of words, elements, operations, and applica-
tions of the task. Syntax variables tend to be quantitative measures

) desctibing the problem statement. Content and context variables
describe surface characteristics that can be observed directly from
the problem statemént or its immediate surroundings. Structure varia-
bles describe the underlying mathematical charscteristics of the tasks,
in contrast to its surface characteristics.

In developing the categorization of task variables, we must take
account of certzin difficulties. Often § very fine distinction deter~
mines the- placing of a variable in one or another category. Some

- variables which we consider to be comtext variables, and thus intrin-
sic to the task, are very similar to some gituation variasbles which
are erternal to the task. Even among the categories of task varisbles,
ambiguity can arise. For example, we shall consider "problem type" as a
content varigble. However, this is distinguished from certain struc-
ture variables by a thin line. If the "type'" of the problem can be
identified from the problem statement, without mathematical processing,
then the problem type is a content variable. However, i{f the problem
"type" i1s identifiable only after beginning to solve the problem mathe-
matically, then it is a structure wvariable. The point is that any
categorization scheme for task variables is somewhat arbitrary: its
value comes from the extent to which it helps identify possible con-
founding factors and provides a means of communication.

The next section reviews some research that is related to content

and context variables. Sections 2 and 3 delineate the proposed class-
ification scheme for these variables,

1. Review of Research Related to Content and Context Variables

In this section, research will be reviewed which illustrates the
major questions that have been asked concerning context and content
task variables. .

Content variables have been investigated both directly and
indirectly, depending upon the purpose of the study. '"Mathematical
topic" has not often been regarded as a variable to be manipulated.
For example, Lucas (1972) investigated the teaching of problem solving
using calculus as the content and Kantowski (1974) has worked with
high school students using geometry. In these studies the mathematj-
cal topic was fixed a priori and problem-solving behavior studied
within the topic area.

Studies that have considered the generalization of heu.. stic pro-
cesses across tasks have sometimes used "mathematical topic' as an
independent variable to study the effects of instruction. Wilson




"~ .(1967) gave high school students instruction in heuristic.processes
on two different kinds of tasks, algebra and logic; he then tested
‘their ability to solve problems on these topics, their use of
different levels of strategy on each task, and their ability to
solve a transfer task in geometry. ‘He concluded that the different
levels of heuristic processes may complement each other, since
superior problem-solving performance resulted whern different levels
of heuristic processes were demonstrated in the two training tasks.
Heuristic processes demonstrated on one task tended to be used on
successive tasks. A similar type of study was done by Smith (1973)
to investigate the effect of giving advice on task-specific heuris-
tic processes as opposed to general heuristic processes. He gave
college students three programmed booklets to study, each on a
different mathematical topic: finite geometry, Boolean algebrs,
and symbolic logic. The task-specific group did better on the logic
and Boolean algebra tasks. The general heuristic process group did
not solve more transfer problems, and did not solve them faster.

Both of these studies investigated a fundamental pedagogical
issue: teaching specific means of solving problems in each content

arga vs. teaching general means of solving problems that can be ap- -
plied to problems from different comntent areas.

Krutetskii (1976) developed problem sets that varied problem
type in order to study the ability of children to generalize. He found
that capable pupils tended to generalize the problems before solving
them, on the basis of a grasp of the general features of the structure
of the problems. Most capable pupils were able to recall the type and
the general character of the operations of a problem they had solved,
but not the problem's specific data or numbers. Less capable pupils
usually recalled only specific data or numbers.

In most of Krutetskii's series, problems from more than one
mathematical topic were used. The tgpics included arithmetic,
algebraic, geometric, logical, end general mathematics problems.
The names of the problem series that varied content or context

variables are as follows (see Table 5.3, Chapter V for more detail): //

- Problems with an unstated question

~ Problems with incomplete information

~ Problems with surplus information

- Problems with interpenetrating elements

~ Systems of problems of a single type

- Systems of problems of :different types

~ Problems with terms that are hard to remember

The first three series were used to study the characteristics of infor-

mation-gathering by mathematically capable pupils, Each of these series
had a high loading on a single factor labeled "formalized perception of

mathematical material."”
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Using some of the same problems as Krutetskii, Silver (1978)
examined student perceptions of "relatedness' among mathematical
word problems. He administered a card-sorting task to one group of
eighth-grade students and later to a second group. The card-sorting
task consisted of 24 verbal problems varied systematically along two
dimensions, mathematical structure and contextual details. Students
were instrycted to form groups of problems that they judged to.be
"mathematically related" and to explain their basis for categoriza-
tion. The students appeared to use four general problem similarity ,
dimensions—-(a) mathematical structure, (b) contextual details, (c) i
question form, and (d) pseudostructure, The latter dimension
referred to associations among problems based on the presence of a
CN . common measurable quantity, such as age, weight, or time, Silver's
four dimensions are similar to those identified by Chartoff (1976)
in administering a card=-sorting task of algebra verbal problems to
500 students ranging from seventh graders to college freshmen,
Chartoff also identified four dimensions-~(a) how the problems are
solved, (b) the contextual setting, (c) comparison with a generic
problem of the same type, and (d) the question posed by the problem,
Chartoff's third dimension corresponds to Silver's "pseudostructure,"

The population used by Silver was composed of students in regular
eighth-grade classes, in contrast to the very capable students predom-
inantly described by Krutetskii. However, the results are very similar
in that the structure dimension tended to dominate students' percep-
tions of ‘problem relagedness. On the other hand, it was not.uncommon
for students in the $lver study to associate problems using the pseudo-
structure dimensions. Further, a negative reélationship was found
between mathematical ability and the tendency to sssociate problems
according to their contextual details.

. The distinction between "typing" problems by their mathematical
structure and by their pseudostructure needs to be developed further.
In general, Krutetskii used the term "problem tvpe" to group problems
having similar mathematical structures. In our scheme of analyzing
task variables, such a classification would represent a "structure"
variable rather than a "content' wvariable. The pseudostructure, as
defined by Silver, refers to the concept of 'problem tvpe" as a
content task variable, since the classification of the problem can
be done strictly from the problem statement, Some of the classifi-
cations of problem type by pseudostructure include "age' problems,
"work" problems and "coin" problems, Much of the problem~-solving
experience students receive in schoel involves working problems
grouped by problem type.

During a part of the Mathematical Problem Solving Project at
Indians University, elementary-age students were asked to select
problems they would like to solve. The criteris used to select the
problems were observed to be very superficial, such as the name of
the person mentioned in the problem or the length of the problem
statement. Rarely did students sélect problems on the basis of
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preblem complexity or difficulty level. When given a choice between
problems stated with a few words and a picture or those stated only
with words, students selected the former more often than the latter,
For example, & problem like 3.l was chosen more often than 3.2. There
are other factors invelved, but one suspects that the differences in
semantic content are among the.reasons the students found 3.1 to be

- more interesting and require less outside help,

3.1 Use each number from 1 to 8 once to fill in the small
squares 8o that mo two numbers that follow in order
(such as ¢ and §) are in squares that touch.

3.2 A bowl has 24 pieces of fruit, Some are oranges and
some are grapefruit. It has twice as many oranges as
grapefruit. How many oranges are in the bowl?

Studies of the "semantic content” of mathematical problems have
examined mathematical vocabulary and the use of '"key words,” Kane
(1968, 1970) argues strongly that mathematical English and ordinary
English differ on at least four factors--the level of redundancy of
words, the unique denotation of names of mathematical objects, the
importance of adjectives, and the flexibility of grammar and syntax,
He questions the validity of the use of standard readability formulas
to assess the readability of mathematics textbooks and problems.

Nesher and Terbal (1975) identify three ways that research studies
have dealt with verbal cues and their relationship to attaining solu-
tions of arithmetic problems, One group of studies emphasizes the need
for training in specialized mathematics vocabulary (Dahmus, 1970; Lyda
and Duncan, 1967; Vanderlinde, 1964; Willmon, 1971). Other studies
(Jerman and Rees, 1972; Loftus, 1970) view verbal cues as a factor in
determining the relative difficulty of verbal arithmetic problem
solving. Following this line of investigation, a distinction is made
between verbal cues, words that cue for specific mathematical cpera-
tions, and distractors or potential verbal cues which are not in fact
cues for operations, In a third approach, Paige and Simon (1966)
raise the question of exactly how verbal cues affect the transition
from the verbal formulation to a mathematical expression.
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Each of the three types of studies is concerned with how the task
variable of "key words" may affect problem-solving performance. How-
ever, research findings do not always substantiate the importance of
key words, particularly in relation to problem difficulty. Nesher and
Teubal found that, for first graders, key words actually deterred fi
ing the correct operation rather than facilitating the process.
three groups of studies, they felt the third group held the most grom-
ise, where verbal cues are studied as they affect the transition fyom
a verbal formulation to a mathematical expression. Loftus kept tragk
of verbal cues in the word problems such as "and" for additiom, "le
or a comparative for subtraction, and "each" for multiplication. She
found that such cues did not enter as a significant regression effect
once other variables with larger multiple correlates were entered into
the equation. These other varisbles, in order of importance, were:
operations, sequence, length, depth, and conversion, .

More studies have investigited context variables than content
variables. The majority of these studies have considered the effects
of different settings on problem difficulty or problem-solving perfor-
mance. In general the findings are inconclusive: the setting of a
problem makes a difference in some studies, while in others the
variation of setting has no effect. Most of the studies have been
restricted to standard word problems similar to those found in text-
books. Little is known about the variation of context on the diffi-
culty of nonroutine problems.

A classic study on the effects of unfamiliar settings on problem
solving was done by Brownell and Stretch (193]1). More important than
the findings of this study is the approach taken by. the researchers.
They sought not only to determine what the effects were, but also to
understand why and how they occurred. The undertaking was to study
whether the success of children in solving arithmetic problems is
conditioned by the familiarity or lack of familiarity in the settings
described in the problems. In particular, it was asked whether
unfamiliarity of setting causes a loss of efficiency in the under-
standing of the arithmetic involved in the problem, in computaticn,
or in both.

"Familiar" was defined as included in immediate personal exper-
ience, as opposed to experiences secured through pictures and reading,
Brownell -~d Stretch took the position that there may be degrees of
unfamiliarity and used four varieties of the same problem with
successive versions designed to make the setting more "unfamiliar."
The first version was designed to be a situation from the students'
immediate experience. The setting of the fourth version was a
situation that was probably unknown to the siudents, and included
some nonsense terms.

An arithmetic problem was assumed to have five separate features:
(1) certain numbers, (2) one or more operations, (3) one or more verbal

clues to the operations(s) ("How many . . . together"), (4) a setting or
situation, and (5) the language (words, sentence structure) necessary ‘



to bind together the preceding four parts, The first three features
are content variables, "'setting" is a context variable, and sentence
structure fallg under the heading of "syntax variables" (see Chapter
II). 1In studying the setting of problems, Brownell and Stretch kept
the other four variables constant. An example of a problem and its
variations is the following:

3.3 There are 34 Boy Scouts in Dick's troop. Each scout
i8 to bring 3 of his old toys to school to give to
poor children in the town. The Scout Master says
that altogether 91 toys have been brought. How many
are there yet to be brought? (47 words)

Soldiers grooming cavalry horses.
(3 x 34) - 91 (47 words)

Refining plant; tank cars of oil in the yards.
(3 x 34) - 91 (47 words)

Hindu village, with bimlecks and toros.
(3 x 34) - 91 (47 words)

(Brownell and Stretch, 1931, p. 19)

The tests wer . J'stered to fifth-grade students with each child
solving all . - versions of each problem. A Latin square design
was used to ensure that the tests were taken in different orders.
The number of children used in the analyses was 256,

Just by considering the number of problems scored correctly, a "
significant increase in difficulty was found as the familiarity of
the problems decreased. Brownell and Stretch examined the data
further to try to explain these results, and found them to be
deceiving. There was little change in the accuracy of computation
as problems became more unfamiliar. The children 8 choices of oper-
ations varied considerably across problems hcving the same number
relationships, even when there were no changes in the familiarity
of the setting. Unfamiliarity of setting is not universal in its
effect on problem solvers. From 65 percent to 80 percent of the
children were unaffected by changes in the familiarity of settings.
The unfamiliarity of the setting had the most effect on the least
skilled children, in their choice of operations and their computation,

'The final conclusion by. Brownell and Stretch was that problems are not

made unduly difficult for children by unfamiliar settings, except
under a limited set of conditions.

Travers (1967) contrasted "social-economic," "mechanical-
scientific,"” and "abstract" problem settings, and found only a slight
relationship between students' preferences and the types of problems
they were successful in solving. Scott and Lighthall (1967) examined
the possible relationship betveen "higher needs” (e.g., love and
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belongingness) and "low needs" (e.g., food and shelter) in the settings
of arithmetic problems, and theackground of students; they found no
statistically significant relationship. Cohen(1976) investigated
“"outdoor," computational, and "scientific" seccings with regard to
problem difficulty, by testing over 200 eighth graders. .Results indi-~
cated that "area of student interest" alone was not sufficient to
predict the type of problem on which they would be most successful.

Another dimension of context variables is the presentation of
the tasks, the forms of which can be varied considerably in problem-
solving research. Some examples include: (a) oral; (b) pictorial;
(c) with physical equipment and apparatuses (particularly with younger
children); (d) in game forms or as "twenty questions"; and (e) in a
written verbal form, sometimes even on overhead projectors with strict
time limitations,

- In spite of the variety of optioms, research that has been done
on different forms of task presentations has been predominantly
restricted to verbal problems, and conflicting results have been

gported. Multiple-choice word problems from the Y and Z population
of NLSMA which were presented with an accurate picture were less
difficult than the same set of problems presented with prose only

or with a distorted picture (Sherrill, 1970; Webb and Sherrill, 1974).
/These results were not supported in a study by Kulm et al. (1972), who
/presented 50 tasks on overhead transparencies and used five different
/stimulus situations: '"textbook," "student-generated," "pictorial "
- "textbook and pictorial," and "student-generated and pictorial."” 1In
this study, students were limited to one minute to read the problem,
followed by three minutes to solve the problem. Students were most
effective on the textbook version of the problems and least effective
on the "textbook and pictorial" version.

Kennedy, Eliot and Krulee (1970) included both number problems
and word problems in their investigation of error patterns in the
problem-solving formulations used by 28 high school juniors. Examples
of a number problem and a word problem as given by these authors are:

3.4 3y-4 _  4y+8
8 = 4

3.5 A man is three times as old as his son. Eleven years
from now he will be only twice as old as his son. How
old igs the son at present?

In general the number problems offered little difficulty for the sub-
jects of this study. The word problems, however, were considerably
more difficult for the less-able students. Rosenthal and Resnick
(1971) also found word problems to be more difficult than number
problems in research involving 63 elementary students,

i
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Another study that looked at varying the form of presentation
used four problem~solving test forms to compare advantaged and disad-
vantaged second and fourth graders (Houtz, 1973). The four forms -
varied from "abstract” to three increasingly "concrete" forms. The a
abgtract form contained written statements of the problems, The pic- -
ture book form had drawings representing the problem placed in the
test booklets above the response alternatives. A third form had
slides made of the drawings and used these in depicting the problems. /.
Finally, the model form included three-dimensional full-color models .
of the drawings. The three concrete forms resulted in a higher level
of performance than the abstract form for both the advantaged and the
disadvantaged children. The model form did not result in the highest
level of performance, and appeared to result in a decrease in the
level of performance of the non~white children in the study.

Loftus (1970) investigated "structural variables" that affect
problem-solving difficulty, using word problems with a small group
of disadvantaged sixth-grade students. One varisble identified was
how a problem was embedded in a set of "like" and "different" prob-
lems. A word problem was found to be more difficult to solve when
it was of a different type from the problem preceding it, This
variable that Loftus identified as "stvuctural"” fits the definition
of a context variable since it relates to how the problem is presented,

This sampling of studies that have investigated content and con-
text variables provides illustrations of the kinds of questions that
can be asked, rather than a definitive description of the effects of
content and context variable manipulation. These studies are repre-
sentative in that no strong results emerge. More studies like that
of Brownell aand Stretch are needed, making an effort to understand
not only i1f there is an effect, but also why there is an effect.

2. The Classification and Definition of Content Variables

The two categories of task variables which refer to the main
essence of mathematical problems are content and structure variables.
Content variables describe the substance of the task, while structure
variables describe the models that represent the solution process of
the task. The analysis of content variables, then, is important
because of their direct link to the mathematical aspects of the tasks.

Table 3.1 provides an overview of the classification of content
variables proposed in this chapter.

Probiem Classification by Mathematical Topic

Our discussion of mathematical topic is divided into two parts:
classification by subject area and classification by problem type. !
The subject area of a task is typically a field of mathematics.
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Table 3.1 A Swmmary of Content Task Variables

1. Msthematical topic of the task
A, Subject area classifications

broad arithmetic narrow ratic and proportion
algebra ' binomial theorem
geometry quadratic formula
analysis ete,
ete, ’

B, Traditional “"problem types"

rate problems
age problems
money problems
mixture problems
etc,

These classifications usually imply reference to mathematical

information which may not be explicitly stated in the problem,
such as the quadratic formula, the equation "distance = rate x
time" or the monetary value of coins.

2. Field of application of the task (if relevant)

biology
chemistry
physics
ete,

A problem may require the use of specific mathematical relation-

ships understood to hold within the field of application, For

example,a physics problem may require application of the law of

conservation of momentum in order to obtain a relevant equation,
3, Semantic coutent of the problem statement

A, Key words

greater than

reduced by
altogether ,
// ete, /
Particular verbal clues often (but not always) suggest speci-
/ fic mathematical operations, Verbal clues may sometimes be
misleading.

B, Mathematical vocabulary

average
root of an equation
polynomial

etc,

Technical mathematical terms may appear in the problem whose
interpretation is important for solution,

&
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Table 3.1 (econtinued)

4, Variables describing the problem elements

A. Given information

given conditions or numerical information

conditions implied but not explicitly stared
hints : ,
ete,

B. Goal information

number of required items of goal information
goals implied but not explicitly stated
problems 'to find" va, problems “to prove'
etc,

5. Mathematical equipment available for the task (if applicable)

- caleulator
compass
protractor
etc-
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Krutetskii chose to use problems representing the five broad suhject
areas of arithmetic, algebra, geometry, logic, and general mathe-
matiecs. Within each of his problem series, he included items
representing different subject areas.  For example, two problems
from Krutetskii's series III (problems with surplus information),
representing different subject areas, are given below (the super-
fluous information is underlined):

Arithmetic Test

3.6 In a store, 24 sacks of potatoes wezghfs kg and §
kg each, with more in the former than in the latter.
The wezght of all the &§-kg sacks wae equal to the °
weight of all the 3-kg sacks. How nuch did each
weigh? ’

Geometry Test

3.7 Given an isoceles triangle, with one side 2 em,
another 10 cm, and the third equal to one qf the two

given ones. Find the third scale. (o .corckii, 1976, pp. 110-111)

The identification of a broad subject area classification for
many problems is straightforward. The following five tasks are from
a book of problems for junior and senior high school scudents, each
has an obvious classification (Hill, 1974). .

3.8 Find all real numbers x such that

'Vs vi-z “ %o

3.9 Given a regular tetrahedron, find the ratio of the
volume of the inseribed sphere to that of the eir-
cumseribed sphere. oo

3.10 Find the number of termimal zeros in the standard
numeral for 100! (100 factorial)

3.11 Fifty tickets numbered consecutively from 1 to 50 are
placed in a jar, and two of them are drawm at random
(without replacement). What i8 the probabmlzty that
the difference of the tweo numbers dram is 10 or less?

3.12 Given the equation sin x = 5%5 s determine the number
of solutions, ) ‘

Hill classified these problems respectively in the domains of
algebra, geometry, number theory, probability, and trigonometry,

Pk
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The classification of these problems can be obtained by considering
the givens, the possible operations, and the goals that are explicit
in the statement of the problem or assumed. It is not necessary to
solve each problem in order to classify it,

Krutetskii and Hill both used traditional subject areas which
can be found in most standard textbooks to classify the content of
problems. However, these classifications are not the only way to
partition the domain of mathematics. For example, in the Unified
Mathematics Program, the table of contents lists the following
topics: Finite Number Systems, Operational Systems, Mathematical
Mappings, The Integers, Multiplication of Integers, Lattice Points
in a Plane, Sets and Relations, Theory of Numbers, Rational Numbers,
Probability and Statistics, Transformations in a Plane, and Usirg
Rational Numbers (Fehr, Fey, and Hill, 1972),

A proolex task does not always fall clearly into a single sub-
ject area, The statement of the task may be in general terms, so
that the solution can be derived by using methods from different
mathematical subject areas. Thus a task may be labeled as "arith-
metic'" or "algebra" depending upon how the problem is expected to
be solved. In this situation the problem task is categorized as
belonging to a particular subject area based upon the mathematical
structure of the task and what processes are to be used to find the
solution. This distinction is important in co sidering subject area
classification as a content variable rather than a structure variable.
Subject area as a content variable is based upon the problem statement
--the givens, the stated operations, and the goals of the task, For
example, consider Problem 3.13. The subject area classification of
this task is geometry, since the givens are all elements of a figure,
the goal is to find a geometric element in terms of three others, and
the implicit operations and needed properties are mostly within the
domain of geometry. The solution, however, has the appearance of an
algebraic relation.

3.18

AN

Find angle e in terms of angles f, g, and h.

‘Webb, 1976)
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Next consider Problem 3, 14:

3.14 A barrel of honey weighs 80 pounds. The same barrel
with kerosewe in i1t weighs 35 pounds. If honey is
twice as heavy as kerosene, how much does the empty
barrel weigh?

(Webb, 1976)

For those who have studied algebra, the most obvious way to
solve Problem 3.14 is to set up simultaneous linear equations and to
solve them using algebraic rules of procedure. Pre~algebra students
are more likely to solve the problem using trial-and-error and com-
putations. One possible solution is to double the weight of the
barrel full of kerosene and then subtract the weight of the barrel
full of honey. Whether this task is classified as an arithmetic
task or an algebraic task depends upon some knowledge of the mathe-
matical experience of the students and their approaches to solving
the task. In this case, to say that “he subject area of Problem 3. 14
is "algebra" refers more to the structure of the task and one effi-
cient way of solving it than to the content of the task.

The degree of specificity of the mathematical topic of a task
will depend upon the purpose of the task. If a goal of a researcher
- 1is to seek a contrast or variation in approaches resulting from solv-
ing algebra problems as opposed to geometry problems, then the tasks
can be chosen to accomplish that goal. This implies wvarying the
global, traditional subject areas. However, if a teacher is struc-
turing experiences for the students in order to cover a variety of
algebra tasks, then more refined subject area stratifications need
to be used, such as "quadratic equations,'" "exponents,'" etec.

Another means of adding specificity to the mathematical topic
of a task is by identifying the problem type. 'Problems of a similar
type' commonly refers to a set of problems that can be solved by
using the same algorithm, Students are taught how to recognize a
certain type of problem and then how to apply an appropriate algo-
rithm. "Rate problems" and "work problems'" are two such problem
types that most students encounter sometime during their first year
of algebra. As a content task variable, the term problem tupe will
be used more generally and will refer to a class of problems with
similar attributes of the problem statement but not necessarily
solvable by the same algorithm., This definition corresponds to what
Silver labeled "pseudostructure.'" Problems of the same '"type'" often
draw on specific mathematical formulas or celationships which are
not explicit in the problem statement (such as, distance = rate x
time)}; these may be essential to the translation of the problem
statement into a mathematical representation.

Formally, the ¢lements of a problem are: the givens, the stated

or implied operations that transform one or more expressions into one
or more new expressions, and the goal or goals. The problem statement

J%
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generally includes a full or partial specification of the givens, the
operations, and the goal(s). For two problems to be of the same prob-
lem type, the givens and the goal as deseribed in the problem statement
must be "similar" and from the same mathematical content area. As an
illustration, examine these two problems: '

3.15 A spherical balloon is inflated with gas at the rate
of 100 ftS/min. Assuming that the gas pressure
remains constant, how fast is the radius of the
balloon increasing at the instant when the radius
ig 3 ft.?

3.168 Water is withdrawm from a conical reservoir 8 ft. in
diameter and 10 ft. deep (vertex down) at the constant
rate of 5 ftS/min. How fast is the water level fall-
ing when the depth of water in the reservoir is 6 ft.?

(Thomas, 1969, p. 112)

Each problem statement specifies the shape of the container, the
dimensions of the container, and the rate at which an amount of fluid
is changing. The goal in each problem is to find the instantaneous
rate at which a specified dimension is changing. "Calculus" is the
mathematical topic of these prohlems, with "related rates' being the
problem type in the traditional sense. The above problems are very
easy to recognize as being similar and of the same problem type in
the sense defined here, The important thing to note, however, is
that these are examples for which two problems can be of the same
type as we have defined it, but for which no common scolution algorithm
exists. Thus, as a content variable, "problem type' is not a suffi-
cient condition for ascertaining the structure of a problem. To
determine the type of a problem just by considering the surface char-
acteristics of the problem can be misleading for the solution process,
In conducting research or providing instruction on problem solving,
both surface and structure characteristics are important. Hence, in
contrasting problems, or varying problems according to type, two task
variables are simultaneously involved: the type of the problem deter-
mined from the problem statement, which is a content variable, and the
algorithmic method of solution, which is a structure variable.

Problem Classification by Field of Application

Many interesting mathematical problems are derived from real-
1ife situations, or from disciplines other than mathematics. . The
"mathematical topic" of phese problems does not adequately describe
the content of the problem. Thus a second major dimension of content
variables is the "applied field" of the task, which is the disci-
pline or real-life situation from which the task arises. This
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dimension cannot be used to describe every task, since many problems
are "purely" mathematical, and contain no reference to an applied
field. '

Genuine applied problems add a new dimension to problem-solving
instruction and research. In its most general characterization,
applied problem solving requires the building, development and test~
ing of a mathematical model. Four steps in a model-building process
given by Maki and Thompson (1973) are illustrated in Figure 3.1. The
original task arises from a "real world" situation where observa-
tions are made and questions posed, Initially the task is general,
global, and not necessarily well-defined. The next step is to make
the task as precise as possible by making certain idealizations and
approximations. In this step irrelevant information is identified,
and significant points are considered. The terminology that is used
still reflects real things, "but the situation may no longer be com-
pletely realistic," The third step is to convert the real model into
a mathematical model in which the real quantities are represented by
symbols and mathematical operations. Now the task is in such a state
that appropriate mathematical ideas and techniques can be used to
reach the conclusions and predictions (step 4), To complete the
cycle, results are compared to the uriginal situation to verify that
the conclusion (sclution) is in agreement with the '"real world" task,
If not, the cycle begins again.

A distinction needs to be made between genuine applied problems
and those problems that are merely embedded in a story or which
merely borrow words from a discipline other than mathematics or
from real-life situations. For the latter type of task, the disci-
pline or real-life situation provides a contex? for the task, but
cannot be considered as 38 bona fide applied field.

An illustration of this distinction is given by Pollak (1978).
He discusses five different forms, three of which have an applied
field. ‘

1) Problems with immediate use of mathematics in everyday life:

-

3.17 A boy has 24 ft. of wire fence to make a rectangular
pen for his pet rabbit. He plans to use all the
fence in making the pen. Could he make a pen 12 ft.
long and 12 ft. wide? '

Why or why not? Could he make a pen 8 ft. long and

3 ft. wide? How about 8 ft. long and 4 ft. wide?

Cive five examples of lengths and widths he could
use for-his pen. (Applied Field: real-life situation.)
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-

Figure 3.1 Four Steps of the Mcdel-Building Process (Maki & Thompson,
1975, p. 10)
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2) Problems that use words from everyday life and pretend to be
applications:

8.18 An electric fan is advertised as moving 3375 cubic
feet of air per minute. How long will it take the
fan to change the air in a room 27 ft. by 25 ft. by
10 ft.? (Assume all old air must be removed first.)
(This problem does have an applied field.)

3) Problems of Whimsy —use of words from daily existence or from
another discipline, when it is quite clear no real application
is intended:

3.19 A bee and a lump of sugar are located at different
points inside a triangle. The bee wishes to reach
the lump of sugar, while traveling a minimum distance.
under the requirement that it must touch all three
sides of the triangle before coming to the sugar.

What is the shortest path? (No applied fielc.)

4) Genuine applications in real life:

3.20 What is the best way to get from here to the airport?
(Applied field: real-life situation.)

5) Genuine appiications to other disciplines:

3.21 A body moves without friction over a horizontal
table. If its initial veloeity is 4 ft. per second,
how far will it travel in 12 seconds? What if there
18 friction? (Applied field: physics.)

(Pollak, 1978, pp. 233-238)

The problems having an applied field are those that have (a) imme-~
diate use in everydav life; (b) genuine application in real 1ife; or
(c) genuine application to another discipline such as physics, com-
puter science, anthropology, social science, business, or economics.
The "applied field" of the task is then the discipline (other than
mathematics) or the real-life application.

Applied problems have both an applied field and a mathematical
topic classification. For example:

3.282 Wh;;\isxé%i:SZkeZihood of a couple having a hemo~
0

philiac s en 1t 18 known that the wife'’s two
brothers are both afflicted with the disease?

Tod



(This situation is depicted below.)
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The applied field of this task is genetics, while the subject area
of the task is probability.

The mathematical topic of an applied problem is not always
apparent from the problem statement alone, Problem 3.20 is stated
very generally, and could be answered without any mathematical con-
siderations at all: the best way to get to the airport may be by
private automobile, since all public means of transportation are not
in operation due to a strike, and the distance to the airport pre-
cludes walking or taking a bicycle. If a quantitative criterion is
set to determine the best way, then this will establish the mathe-
matical topic of the task. Some applied problems, due to their
breadth, may fall in more than one mathematical subject area,

Recently, more emphasis is being given to applied problems in

instruction, as evidenced by the algebra series, Algebra Through
Applications with Probability and Statistics (Usiskim, I976). Even

in this series, however, several problems are merely embedded in a
context from a real-life situation or other discipline and do not
have a genuine applied field content., However, there are many prob-
lems which do come from real-life situations, as illustrated by the
following:

3.23 Momthly electric rates for a residence in Illinois
(as of April, 1374) were as follows (quoted from
Commorwealth Edisom pamphlet): '

L3
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Monthly charge 80.95

Ist 100 kw hrs. of use .0385 per kw hr.
Next 225 Kkw hrs. of use . . 0282 per kw hr.
Over 325 kw hrs. of use .0279 per kw hr.

Tax 18 added to this and adjustr{zeﬂts are made if the
price of energy to Cormovwealth Edison changes. What
would be the monthly charge for ebch amount of energy?

5. 100 kw hours 6. 200 kw hours
7. 400 kw hours 8. 700 kw hours

(Usiskin, 1976, p. 191)

Applied problems as used in problem-solving research may evoke
different behaviors and solution processes from those evoked by prob-
lems in pure mathematics. Knowledge of specific mathematical rela-
tionships which pertain to an applied field, such as equations of
motion in physics, may be necessary. There may be an iicreased com-
plexity in the translation process, and several alternative solutions
may exist. Because of their special nature, applied problems deserve
special attention in research and in the teaching and learning of
mathematics, A greater understanding of this content variable would
facilitate the increased use of applied problems in instruction.

Semantic Content Variables

The third major category of content variables in Table 3.1 des-
cribes the meanings of the mathemcrical words and phrases that form
the statement of the problem. This dimension we shall call "'semantic
content,' and divide it into two parts for discussion--key words and
mathematical vocabulary. This dimension is used to describe the
semantics of natural and technical language that may affect problem-
solving performance.

Natural language is related to problem-solving performance through
the large number of written problems students face during theilr mathe-
matics experiences in school., Such problems require comprehension of
the written statement and translation of the problems into mathematical
expressions that model the mathematical structure of the problem. Of
course, very complex and difficult problems can be stated using a few
easily understood words; for e:ample:

'3

3.24 Show that it 1is impossible, uging a compass and
straightedge, to trisect an angle.

On the other hand, trivial mathematical problems can be embedded in
lengthy or semantically complex statements. The words used to state
a problem do not necessarily reflect the structural complexity of

Q 704
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the problem, but do affect the comprehension and translation of the

" problem statement. Performance on word problems thus is influenced

by a combination of linguistic and mathematical abilities.

Key words have been given a great deal of attention over the
years in solviag computational word problems.* Students are taught
to use certain words such as "less," "more,'" "each," "gained," and
"altogether" as verbal ~ues for specific operations. Loftus (1970),
however, found that the verbal cue variable did not have a signifi-
cant regression effect on problem difficulty for a group of sixteen
disadvantaged sixth-grade students solving arithmetic problems. The
verbal cues that were used were "and" for addition, "left" for sub-
traction, and "each” for multiplication.

The benefit of using "key words' as an approach to instruction
is open to question. Nesher and Teubal (1975) point to the fact
that the same words appear at times as valid cues, and at other
times as distractors with a meaning contrary to the most common
usage. For a group of approximately 120 students toward the end of
first grade, they found that a greater percentage of students
answered the problem correctly when a key word was given that
corresponded to its usual operation, than when a key word was given
that did not correspond to its usual operation. Eighty-seven percent
of the children who attempted an addition problem which used "more"
as a verbal cue answered the problem correctly. Only 62 percent of
the children answered correctly a similar addition problem which used
"less" as a verbal cue. The two addition problems were:

"More'" as a verbal cue

3.25 The milkman brought on Sunday 4 bottles of milk more
than on Monday. On Monday he brought 7 bottles. How
many bottles did he bring on Sunday?

"Less" as a distractor

3.26 The milkman brought on Monday 7 bottles of milk.
That was 4 bottles less than he brought on Sunday.
How many bottles did he bring on Sunday?

(Nesher and Teubal, 1975, p. 51)

Placing too large an emphasis during instruction on the identification
of key words in word problems can thus mislead students,

*These are words from natural language which commonly\have a
specific mathematical interpretation.
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Figure 3.2 Misinterpretation of Problem 3,28
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Here is another example:

3.27 Two piles of ecal are in a yard; pile A has 15 tons
and pile B has 12 tons. A truck takes away all but
5 tons of the coal from pile A. A second truck takes
away all but 4 tons from pile B, How much ceal is
left in the yard?

(Weaver)

The key words in this problem, "take away" and "left,” all naively
suggest a subtraction problem, but the correct operation is additiom, ,-
This type of ‘problem is useful in investigating whether students are™’
focusing on the superficial characteristics of the problem (rote - .N\\
transl? ion of key words) or are able to comprehend the meaning of .
the proolem statement and select the correct mathematical represen~
tation.

f

-

Up to now we have been discussing key words as either verbal
cues or possible distractors. Another important type of word is
one which is essential to the meaning of the problem, but which
does not suggest an operation. This type of word will be called a
eritical word. The critical words of the following problem are
underlined, '

3.28 During the first three years of growth, a tree grows
only 1ts trunk. During the fourth year the trunk
divides and grows into two main branches, During
the fifth year and every year thereafter, it grows
two new branches on each old branch. How many new
branchee are groum during the eighth year of growth?
How many new and old branches does the tree have after
eight years of growth?

(Gimmestad, 1977)

As the task is worded, it is very easy for someone to misinterpret '
the problem and assume that as the trunk divides into two branches,
so will the branches. The word ''divides'" can create a "mind-set"
for the remainder of the problem. The word "on" is crucial to the
meaning of the problem.

A misinterpretation of the problem is a "tree diagram” with
each branch dividing in two (see Figure 2,2). The correct inter-
pretation has the two new branches growing on the existing branches,
so that where there was only one branch before, there are three (see
Figure 3.3). ‘

A critical word, such as "on" in problem 3.28, is essential to
understanding the mathematical relationships described in the prob-
lem. One means of investigating critical words and the comprehension
of word problems is the Cloze procedure, When using this procedure,
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a number of words of the problem are replaced by blanks, anywhere from
only one word to every fifth word being omitted., The student is asked
to fill in the correct words. A good indication of how students com-
prehend Problem 3.28 can be obtained by replacing the word "on" with
a blank, and asking the student to f#11 it in,

The second part of our discussion of semantic content concerns
mathematical vocabulary. Natural language words used in the problem
statement have their standard meaning as they are used in everyday
life, while mathematical language refers to words that take on special
meaning as they are being used in a mathematical contexi. The word
"function," for example, in mathepatics means mapping from one set to
another; the common meaning of "function" is the specifi~ action or
use of a thing, such as the "function'" of the brain,

Even when the words in the statement of a problem assume their
ordinary meaning, Kane (1968) argues that reading mathematics texts
or problems requires a special ability, different from that required
to read ordinary prose. However, mathematical vocabulary is partic-
ularly important in problem~-solving research studies that use a
control group which has not been exposed to a particular form of
instruction. When presenting unfamiliar problems to control groups,
differences in performance may be due to a lack of familiarity with
the mathematical vocabulary in the problems, rather than to differ~
ences in the ability to carry out mathematical operations, Thus .it
may be relatively easy to produce an "effect" on measured problem=-
solving ability in an experimental group, merely by the introduction
of technical mathematical vocabulary.

Variables Describing the Problem Elements

A fourth category of content variables concerns the problem
elements, The "elements'" of a problem correspond to the three types
of iuformation of which formsl problems are normally composed: givens,
operations, and goals. The attributes of each set of elements provide
another means of describing the content of the problem, Are all of
the givens stated explicitly, or are some conditions implied but not
explicitly stated? What are the given conditions or items of numeri-
cal information? Are the givens related conjunctively (and) or dis=-
junctively (or)? What operatlions are stated or implied by the problem
statement? The goals of a mathematical problem can likewise be class~-
ified. One important classification of goals is into the categories
"to find" or "to prove.'" '"To £ind" goals can be classified further
by describing that which is to be found. The list below gives some
examples of how the goals of problems "to find" can vary.

105



-93-

A number as the goal:

3.28 Find a four-digit number which is an exact square,
and such that its first two digits are the same and
also its last two digits are the same.

(Shklarsky et al., 1962, p. 27)
A set of numbers as the goal:

3.30 Find five positive whole numbers a, b, e, d, and e
such that there is no subset with a swn divisible
by &.
(Posamentier and Salkind, 1970)

A process as the goal:

3.31 Three carmibals and three missionaries are on the bank
of a river. All of them want to cross the river, but
they have only one boat that holds two people. How
can they all get aeross the river without ever having
the eannibals outnumbering the missionaries on either
side of the river?

An expression as the goal:

3.32 In quadrilateral ABCD, BA and BU are each equal to t,
and < ABC =4 A +&C. Ezxpress BD in terms of t.

A construction as the goal:

3.33 Given a line AB, construct, when possible, a point P
in AB such that the sum of the squares on AP and PB
18 equal to the area of a given square. When is it

impossible? ( A
3 (Durell, 1960, p. 28)

A geometric figure as the goal:

3.34 Draw a rectangle with a perimeter of 81 em and with
the maximum possible area.

A logical conclusion as a gbal:

3,35 Twelve persons were traveling and brought a dozen loaves
of bread.” FEach man brought 2 loaves, each woman brought
half arloaf, and each child a quarter of a loaf. How
many .men, women and childrew were traveling?

(Krutetskii, 1976, p. 150)

-
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Problems "to find" can also be partitioned in other ways by con-
sidering the nature of the goal. In the following problem, the goal
is to find the configuration of coins that satisfies the conditions:

3.36 Judy has 32 coins with the total value of $2.00. She
does not have any nmickels. What coins does she have?

This differs from the following problem, where the goal is to exhaust
all of :he possibilities that meet the conditions:

3.27 Find the number of ways inwhich 20 U.S. coins consisting
of quarters, dimes and nickels can have a value of $3.10.

(Webb, 1976)

Even though both problems "to find" can be classified as money problems,
the nature of the goal varies, Such a distinction is particularly
important when selecting problems which are more likely to be solved
using one approach than another. Problem 3.36 is well suited for a
"guess and test" approach, since the conditions are explicitly speci-
fied and it is easy to generate possible sets of coins. The solution
can be verified by ensuring that the set contains 32 coins, does not
have any nickels, and totals $2,00, Guessing and testing is one
approach for Problem 3.37 as well, but will generally not lead to a
solution without additional refinement. The problem solver needs to
develop some means of analysis to ensure that- all of the possibilities
have been exhausted. :

Problems '"to prove" vary in a similar fashion. Such problems can
have as their goals proofs of theorems, lemmas, statements, or expres-
sions. This categorization of goals is to be distinguished from the
classification of problems by possible type of proof--direct, indirect,
inductive, reductio ad absurdum--which would represent a structure
classification.

Mathematical Equipment

Other categories of content variables exisf, such as the type of
equipment required for the task. In this category, problems could be
classified in accordance with the requirement for use of mathematical
msterials, such as a calculator or straightedge and compass. The
content variables given here, and summarized in Table 3.1, are not
exhaustive. The more important areas, those that appear most often
in instru:tion and research, have been identified. -

3., The Classification and Definition of Context Variables

The context of a task refers to circumstances, surroundings, for-
mats and instructions that are included as part of the task and which
influence the understanding of the task. The distinction we make
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between context variables and situation variables (which are not task
variables) is that context variables, are intrinsic to the task, and
not descriptive of the external environmental circumstances in which
the problem is solved. On the other hand, the content-context
dichotomy is analogous to the substance-form dichotomy. Whenever .

a problem is given, choices are made about the form of the problem.
It may be presented orally, in written form, or pictorially. The
essential information of the problem can be embedded in a story.
Hints may be included or made available. Extraneous non-mathematical
information may be included. All of these choices determin% the ‘con-

text of the problem. f
: !

This section describes a set of context variables, which are
summarized in Table 3.2, Awareness of the possible variatipns of
problem context can improve the teaching of problem solving and
guide the development of sets of problems to be used in the study

of problem solving.
Problem Embodiments or Representations

The essential elements of a problem are the givens, the opera-
tions, and the goals. The most succinct statement of these will be
called the kernel of the problem. Often the kernel is embedded in
a verbal statement or story that has no mathematical relevance to
the problem, although it may affect motivation as well as overall
problem difficulty. The verbal embodiment of. the problem then is
the statement that is used to present the essential information of
the problem. Variations in the verbal embodiment of a problem are
illustrated below. The simplest version of the problem is given
first. The next two versions increase in both syntactic complexity
and the complexity of the story contert that is described,

Sum Problem

i

3.38 Find the smallest set of whole numbers such that
every integer from 1 to 7 is either an element of
the set or a sum of the elements in a subset.

Modified Golden Chain Problem

3.39 A wéman har a chain with seven gold linka. She would

like to take a seven-day trip by carriage. The

ver has agreed to take her for one link of the
gglden chain for each day, payable at the end af the
day. If it costs the woman five dollars to have a
jeweler open one link, what is the least amount of
money she would have to spend to open links so the
/driver can have ome link the first day, two links
' the second day, and so on?

e /o I




Table 3.2 A Swmwnary of Context Task Variables

1, Problem embodiments or representations

manipulative
pictorial
symbolic
verbal
etc.

U o-

2. Verbal context or setting

familiar vs., unfamiliar
applied vs, theoretical
concrete vs, 'abstract
factual vs, hypothetical
conventional vs., imaginative
etc, ‘

The verbal context or setting refers to such extraneous
non-mathematical information as may be contained in the
problem statement.

3. Information format

presence or absence of hints
multiple~choice vs, free-answer
etc, '




Golden Chain Problem >

3.40 A Chinese prince who was forced to flee his kingdom
by his traitorous brother sought refuge in the hut of
a poor man. The prince had no money, but he did have
a very valuable golden chain with seven links. The poor
man agreed to hide the prince, but because he was poor
and because he risked considerable danger should the
prince be fournd, he asked that the prince pay him one
link of the golden chain for each day of hiding. Since
the prince might have to flee at any time, he did not
want to give the poor man the entire chain; and since
it was go valuable, he did not want to open more links
than absolutely necessary. What,is the smallest number
of links that the prince must open in order to be cer-
tain that the poor man has one link on the first day,
two links on the second day, ete,?

The most common form of embodiment of a problem is a story. The
general opinionm is that presenting a problem as part of a story will
in:rease the level of interest of the student in finding the solu-
tion to the problem, In some cases, this backfires and the embodi-
ment actually retards interest in the problem; this may occur if
the difficulty in extracting the relevant information is excessive.

In addition to purely verbal embodiments, problems may be pre-
sented in manipulative, pictorial, or symbolic form. For example, a
problem presented in a manipulative embodiment might include a physi-
cal model of a river, a dock on either side, one ferryboat, and a
number of cars. The problem is to transport the cars on the ferry
to the other side of the river., The conditions of the problem can
be varied by changing the size of the ferry and the number of cars.
The goal of the problem can be varied by restricting the number of
trips or the number of cars allowed on the ferry boat at one time,
stipulating that the smallest possible number of trips is desired.

The problem is a partitioning problem for younger children. The
solution may be found by manipulating the objects.in the model. The
conditions of the problem do not have to be interpreted exclusively
fréom the verbal problem statement, because the child can .determine
these from the physical objects themselves, being limited in the
number of cars that will fit on.the ferry boat at one time, or by
the total number of cars. Another benefit of using the manipulative
form, besides the ease with which students can understand the prob-
lem, is that an observer can more easily describe the processes that
students use in finding the solution. It 1s very easy to record the
trials that are made and the sequence of steps that is followed.

A second manipulative problem involves a cube that is painted
red on the outside and is divided into 27 equal cubes as -shown.

Fra



P e

N\
NN NN

The subject is asked to determine how many small cubes are painted on
4 sides, 3 sides, 2 sides, 1 side, and 0 sides. 1If a real cube is
placed in front of the subject, even though the cube cannot be
handled, the problem can be considered to have a manipulative com-
ponent in its embodiment, As the solution of the problem progresses,
the subject may be allowed to look at one of the smaller cubes as a
hint. Which small cube the student selects, and what information is
derived from the small cube, will help the observer determine what
the student is considering in solving the problem.

Manipulative problems are not restricted in their appeal to
children only. The problem of "instant insanity" 1s a good example
of a concretely presented problem suitable for adults, The puzzle
has four cubes with each face painted with one of four colors. The
object is to stack the cubes so that exactly one of the four colors
is showing on each side of the stack. Even though the problem is
presented in a manipulative embodiment, adults will often create a
symbolic embodiment to solve this problem.

A third type of problem embodiment is the pictorial, As an

example, problems can be presented pictorially with no words or very
few words accompanying the picture, such as the following:

8.41

. . [ e o 9 LI B ) ? ?
. [] [ e = @ e« & o @ * eo 0 @

~

The pictorial embodiment is generally considered to be a more abstract
form of presenting a problem than the manipulative embodiment. Con~-
ceivably, a person could create a physical model of the problem and
solve the problem manipulatively. However, it is more likely that
translation will be in the direction of a more abstract (i.e.,
symbolic) representation. Pictorial presentations do not have all

of the advantages of manipulative presentations, but they do reduce

the interaction between problem-solving performance and verbal ability,
At the same time other variables may be introduced in addition to
simply that of presentation., For example, pictorial presentations may
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introduce variables of spatial relationships as well. The reader is
referred to studies by Moses (1977), Schonberger (1976), and Frand-
sen and Ho’den (1969) for examples of this phenomenon.

Finally we have the symbolie embodiment, which is the most
commonly used. This category includes problems presented exclusively
in written form, or by using symbols such as those in an equation.
This is the most abstract of the forms of problem embodiment.

The three forms of problem presentation: manipulative, pictorial,
and verbal-symbolic, parallel the three forms of representation used
by. children to store and retrieve information as identified by Bruner
(1966), These are: enactive, things we know through aetion; Zeonie,
things that depend upon visual or other sensory organization; and
symbolic, representations in words or language, Bruner suggests that
intellectual development proceeds with the development of each of these
systems until all have been mastered.” Thus we expect the ease of work-
ing within a particular type of problem embodiment to be directly
related to a subject's level of cognii:ive development, as well as to
variables such as verbal and spatial ability.

Verbal Context or Setting

The verbal embodiment of a problem can have different character-
istics with respect to the problem solver. One dichotomous set of
characteristics is the abstract versus concrete embodiment, discussed
by Goldin and Caldwell in Chapter VI, An "abstract' word problem
involves a situation which describes only abstract or symbolic
objects, while a "concrete" word problem describes a real situation
dealing with real objects.

Abstract

3.42 There is a certain given mumber, Three more than
twice this given nwmber is equal to fifteen. What
i8 the value of the given rumber?

Concrete

3.43 Susan has some dolls, If she had four more than
twice as many, she would heve fourteen dolls. How
many dolls does Susan really have?

A slightly different version of the abtstract-concrete dichotomy was
used by Krutetskii in one of his series of problems. The problem
set consisted of problems that made a gradual transformation from
"concrete" to "abstract,' where the mcst abstract problem used only
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variables and the concrete problem used only numbers, The problems
in between included both variables and numbers. The two extreme
variants of a problem in one set are given below:

3.44 The length of a room is 6 m, its width is 3 m, and
its height is 3 m. What is the volume of 4 such
rooma? (Conecrete)

3.45 The length of a room is b m, and its width and
height are a m each. What is the volume of n
such rooms? |4bstract)

(Krutetskii, 1976, p. 124)

A second characteristic of the embodiment of a verbal problem,
discussed in Chapter VI, is the factual~hypothetical dimension,
Problem 3.42 illustrates a factual problem and Problem 3,43 a
hypothetical one. The distinction between the two is that a
factual problem merely describes a situation, while a hypothetical
problem suggests a possible change in the situation.

Many other characteristics of verbal problem contexts have

already been mentioned in the review of the literature--familiar

vs, unfamiliar contexts (Brownell and Stretch, 1931), social~economic
vs, mechanical and scientific vs. abstract (Travers, 1967), low needs
vs. higher needs (Scott and Lighthall, 1967), and outdoor vs. computa-
tional vs, scientific (Cohen, 1976)., The preponderance of evidence is
that most of these variables do not greatly affect problem difficulty
when other variables are controlled, '

Information Format

Another dimension of problem context is the way in which the
problem is partitioned when it 1s presented. Is all the information
given at once, or is only part of the information given initially,
with time allowed for processing before new information is given?

Is there some information which is given only when requested by the
problem solver? Is information given in the form of "hints'"?
Different parts of the problem may even be presented in different
embodiments--manipulative, pictorial, or verbal-symbolically.

: The most common information format is to present the problem as

a whole, including sufficient information for a unique solution, The
use of other formats may depend upon the purpose of the problem, For
example, if the purpose is to study how a child uses different condi-~
tions of the problem, one condition can be given at a time, For
example, '

'3.46 How many chickens and pigs are there, i1f there is
a total of 50 legs?

A fourth grader working this problem will in most cases discover that
there are many solutions. The problem becomes one of organizing the
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information and defining some system so that all possibilities can be
exhausted, If a second condition such as: "There are twenty heads"
is given, the child can use the information already derived, together
with the new condition, to obtain a unique answer. The researcher or
a teacher may acquire more information in this way about the problem-
solving procedure used by the child than if both conditions had been
given together. 7

"Hints" are another way of varying the formats of problems,
Some studies have allowed the problem solver to work on the problem
as far as possible alone, and then have given hints to see what the
problem solver does with the new information, Some researchers include
hints that will eventually lead to the solution, to ensure that the sub-
jects reach a solution and to reduce the likelihood of frustrationm,

Roman and Laudata (1974) constructed a CAI program to instruct
elementary school children in grades 4 and 5 on word problems. They
used a series of three hints to help identify the general steps taken
in solving word problems. For example:

3.47 The problem: In April Harvey held some toys. Yester-
day, he divided the toys imto 45 boxes. How many toys
did he hold in April, if there were 3 toys im each box?

First hint: Restate the question: Find the nwmber of
toys Harvey started with. Now reread the problem.
(Identifies the unknoun.)

Second hint: Restate the question: It is similar to
Harvey's toys divided into 45 boxes given 3 toys in
each box. ? = toys Harvey etarted with. Now reread
the original problem, (Restatement of problem in
gingle syntactic form, omitting superfiluous informa-
tion.)

Third hint: Translate the problem to a number sen-
tence: ? toys/45 bozes = 3 toys in a box, or ?/45 =3,
Now solve the nwmber sentevnce. (A mathematical state-
ment that relates the variables in the problem to an
appropriate number sentence.)

(Roman and Laudata, 1974)

Hints can provide useful information not only for the problem
solver but also for the researcher and the teacher. &How the hints
are being used, how many are needed, and whiech hints provide the key
to solution all yield useful information about the thought processes
students are using.

In this section, we have reviewed three categories of context
variables: problem embodiments, characteristics of the verbal
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contexts or settings, and information format, In Chapter IX, this
classification is applied to derive some suggestions for the more
effective teaching of problem solving.

4. Summary

. s g
In this chapter, schemes have been proposed for the classifica-
tion of content and context variables. Content is taken to refer to
the substance or meaning of the problem statement, while context
refers to the form or inessential characteristics of the problem,
The main categories proposed for content variables are: Mathematical
Topic, Field of Application, Semantic Content, Problem Elements, and
Mathematical Equipment. The main categories proposed for context
variables are: Problem Embodiment, Verbal Context, and Information
Format. '
The proposed categories are not exhaustive, As more research
on problem solving is performed, and as research interests change,
new categories and subcategories may have to be added. For example,
current interest in sex~-related differences in mathematics education
suggests that attention will be paid to gender in describing the
verbal context of problems. To list all possible content and
context categories would be an insuperable task. The classification
schemes described here provide a useful framework for studying the
effects of varying content and context in mathematical problems.
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Iv.
Structure Variables in Problem Solving

by

Gerald A. Goldin
Northern Illinois University
De Kalb, Illinois

While syntax, content, and context variables principally describe
the statement or embodiment of the fproblem, structure variables describe
the mathematical properties of a ptoblem representation (see Chapter I,
Fig. 1.1). In order to derive syptax variables, it may be necessary to
carry out a linguistic analysis ¢gf the problem statement; in order to
derive content and context varigbles, one may classify terms in the
problem statement in accordancefwith their mathematical meanings or
one may classify the given problem embodiment in accordance with its
characteristics. These variabfles do not require a mathematical analy-
sis of the problem for their definition. By contrast, structure
variables are those which arg obtained only by means of some such
analysis.

Structure variables depend for their definition on the partic-
ular representation of th¢ problem within which the analysis takes place.
For example, a structurejvariable which has been studied fairly exten-
sively is the "number of steps" required in solving a problem, However,
this number will obviously depend upon the method of problem solution
which is selected as the standard. Im additiom, it will depend on what
one chooses to call a '"step'"--to pass from the equation 2x + 3x = 10
to the equation 5x = 10 might be thought to require only one step; or
it might be thought to require two steps [2x + 3x = 10, (2 + 3)x = 10,
5% = 10]; or even more steps [2x + 3x = 10, 2x + 3x = (2 +3)x, (2 + 3)x
= 10, 24+ 3 =5, 5x = 10]. Is there, then, such a thing as "intrinsic”
problem structure, apart from the particular problem solver? ‘

Certainly different problem solvers may formulate different repre-
sentations from the same problem statement. There may be a wide
variety of different and creative approaches to gaining insight into
a problem, including reference to related but distinct problems. Rules
of procedure may be open to interpretation. Nevertheless, it is the
viewpoint of this chapter that, given a set of well-defined rules or
operational procedures, a well-defined structure will be generated that
is subject to formal analysis. Furthermore, a mathematical problem
translates into just such a system of rules of procedure, sometimes
stated explicitly in the problem and sometimes to be understood from
the mathematical framework within which the problem is presented. This
is the sense in which we interpret problem structure variables as thek
variables. ‘
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When rules of procedure are subject to more than one interpretation,
it is necessary to make explicit the possible interpretations, and these
become part of ‘the description of intrinsic problem structure. Likewise,
when different representations of the problem may be obtained through
translation of the problem statement, it will be necessary to select one
or more of them for analysis in order to obtain problem structure varia-
bles. For example, if asked to find the minimum value of the expression
y = x2 = 2x + 3, a first-year algebra student might construct a table of
values, proceeding by systematic trial-and-error to arrive at a minimum
value, Another possibility is to draw a graph of the function y = x2 -
2x + 3 and, from a visual inspection, determine the minimum. A calculus
student, having available additional rules of procedure, might set. the
derivative equal to zero, solve for x, and substitute. Thus, the prob-
lem might be represented by means of a sequence of values of x and
corresponding values of y; or by means of a graph, or by means of a
sequence of equations beginning with §§ = 0, But the existence of such
different representations does not mean that intrinsic problem structure
variablzs are impossible to define, Rather it means that we must be
explicit about our choice of representation in performing the analysis,
It will usually be desirable to consider those representations most
commonly employed by the population of subjects for whom the problem
is intended.

In this chapter we shall develop and apply methods of state-space
analysis to define and examine problem structure variables. Some of the
development is familiar to students of "artificial intelligence" but not
in general to mathematics educators; this includes much of the material
at the beginning of Section 2, which is included for completeness. After
introducing the basic definitions, we shall return to the questicn of
characterizing '"relatedness' among problem representations. We shall
also discuss the sense ir which algorithms and strategies may be regarded
as part of the "intrinsic' problem structure.

In the study of problem-solving processes and the teaching of
problem-solving skills, task variables are usually taken to be the
independent variables--they are subject to the control of the researcher
or the teacher through the selection or creation of appropriate problems,
Dependent variables of interest include variables describing the amount
of success in problem solving (problem difficulty), variables describing
the employment of specific processes (patterns of behavior, strategy
scores), and variables which measure the learning which has taken place
during problem solving (transfer to related problems). Thus, we shall
most frequently be interested in defining problem structure variables
which are likely to influence these outcomes, The term complexity
variables" can be used to highlight those variables expected to affect
directly the problem difficulty.

Before proceeding with the development, we shall briefly survey
some of the research related to problem structure variables.
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1, Review of Related Research

Al

A dramatically increasing body of research employs "artificial
intelligence" models, or mechanical models, to describe human problem
solving. Some of this research is oriented toward finding the most
efficient algorithms or strategies.-for solving problems with a com-
puter, which necessitates the formal analysis of the structure of
problem representations (Arbib, 1969; Banerji, 1969; Hunt, 1975,
Nilsson, 1971). Such formal analysis is reproduced and extended in
the present chapter, from the standpoint of examining task structure
variables which can affect the outcomes of problem solving.

The "'state-space representation' of a problem provides the basis
for much of our formal analysis (Hunt, 1975; Nilsson, 1971). One goal
of artificial intelligence research has been to program high-speed
computers to solve problems in logic, to play games such as chess and
checkers, or to make decisions in specified situations to obtain the
most favorable possible outcome. Thus, an entire branch of the field
is devoted to obtaining efficient search algorithms, by means of which
the mechanical problem solver can ''look ahead" in the state-space or
game tree, or ''foresee'" the outcomes which are possible following a
particular choice, Nilsson discusses "breadth-first" and 'depth-first"
search algorithms--roughly speaking, in the former all possible contin-
uations are examined, a single step at a time; in the latter, a single
continuation is followed to its end before another one is tested. In
addition there are search algorithms which combine features of both
these approaches. Complications arise because there must be an effi-
cient means for the mechanical problem solver to "remember' which
states have already been entered, and which have not,. ‘

Since for most problems or games the number of possible branches
rapidly becomes more than astronomical, the field of choice must some-
how be narrowed, In order to avoid searching to the very end of every
path, a value may be assigned to each state based on information avail-
able in that state, This evaluation function represents a measure of
expectation for future success, An example of this technique is the
use of "positional judgment" in chess, whereby such features as
"control of the center' and '"safety of the king" affect the desir-
ability of & position. Once criteria for such an evaluation have beeu
established, the search algorithm may be constructed to look only n
moves ahead, to calculate the evaluation function for the terminal
states reached, and to make the choice which maximizes the terminal
value, Procedures based on such evaluation functions are called 'hill-
climbing" by Wickelgren (1974), and form an important component in his
survey of problem-solving methods. In a competitive game, the choice
{s made which maximizes the minimwn value (across opponent's moves) of
the terminal states resulting from the choice. A modification of this
"minimax" procedure which further reduces the number of states in the
search is to select only a narrowed class of moves whose continuacions
are to be investigared, based on pre~-specified ~riteria,

121




-106-

ps

The "Ceneral Problem=Solver' of Newell, Shaw, and Simon has greatly
influenced the field of artificial intelligence, as well a2s providing a
take~off point for the modelling of human problem solving (Erast and
Newell, 1969; Newell, Shaw, and Simon, 1960). It embodies a kind of
depth-first search algorithm in which the first object of the program
is to identify a subgoal state which might eventually lead to solution
of the main problem. The subgoal state is chosen to be "less distant"
in some suitable sense from the goal state than is the initial state.
When such a subgoal has been identified, control switches to the task
of attaining the subgoal, prior to returning to the task of obtaining
the original goal. This technique is to be applied recursively, until
a string of attainable subgoals has been generated that extends from
the problem's initisl state to its goal state. Thus Newell, Shaw, and
Simon take the position that utilization of the subgoal and subproblem
structure of a problem is fundamental to efficient problem solving. 1In
this chapter, we shall utilize these concepts in defining some of our
task structure variables.

The geometry theorem-proving machine of Gelernter (1959, 1960)
utilizes the "syntactic symmetries" of a problem to facilitate the
state-space search. When the program has succeeded in reaching a
particular state, it proceeds to generate those states which are
syntactically equivalent to the state that was rriched--that is, equiv-
alent by permutation of syntactically equivalent elements in the problem
statement, This procedure eliminates the necessi’v of reproducing all
of the equivalent paths, and is more efficient in ituations where
symmetry exists. Nilsson also discusse: states in the problem state—
space which equivalent by symmetry. In this chapter, we make
extensive use of problem symmetry in defining certain task structure
variables which may be expected to affect problem-solving outcomes.

The methods that have been mentioned are directed towards more
efficient machine programming of problem~solving capabilities. While
the techniques are often motivated by introspectively or empirically
obtained information about actual human problem solving, their main
purpose has been effective programming. Another branch of research
motivated by artificial intelligence is directly concerned with des-
cribing or modelling human problem solving.

One approach taken by researchers has been to try to simelate human -
problem—~solving with mechanical procedures. Here the gosal is to gene-
rate some human~-like behaviors during the course of problem solving.

For example, Newell and Simon compare the trace of the General Problem
Solver solving a logic problem (that is, the actual sequence of routines
and subroutines employed) with the protocol of a human subject solving
the same problem, finding many parallels. Minsky and Papert (1972)
discuss Plaget's conservation experiments from the standpoint of the
acquisition of specific descriptive and deductive procedures. Paige

and Simon have compared Bobrow's STUDENT program for solving verbal
problems with subjects' protocols (Bobrow, 1968; Paige and Simon, 1966)
~-STUDENT is discussed at greater length in Chapter VI of this book.

£lx
£
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A detailed information processing model has been developed simulating
the observed behaviors of subjects solving "concept attainment' prob-
lems (Bruner, Goodnow, and Austin, 1956; Johnson, 1964). Efforts
along these lines, hHowever, are sometimes subject to the limitation
that the programming methods employed do not lend themselves to gene-
_ralization beyond a specific problem domain.

Beyond trying to simulate human problem solving with specific
- programs, Newell and Simon have proposed a comprehensive model for
the human problem solvér as an information-processing system, They
introduce the concept of a "problem space" to represent the task
<snvironment within the information-processing system; they then hypo-
thesize that human problem solving. takes place by means of a search in
such a space. The prohlem space of Newell and Simon (1972) is described
in Table 4,;1. " The first four components of the problem space correspond
almost exactly to the definition of a problem state-space representation
~-with the important difference that instead of states of the problem
itself, the reference is to states of knowledge about the problem.
Newell and Simon obtain what they call the "problem behavior graph' of
) a subject in the "external problem space." It is the structure of this
"external problem space" which is the principal concern of the present
chapter. .

The missionary—cannibal problem and its.variants, described in
detail in Section 2 of this chapter, has been used extensively with
subjects whose moves have been recorded in such an "external problem
space’” or state-space. Thomas used a variant of the problem called
"Hobbits and Orcs" with-young adult subjects (Thomas, 1974), Hobbits
correspond to missionaries, and orcs to cannibals (gsee Problem 4.2
below). In Thomas' study, a control group solved the problem oncej
an experimental group solved the problem first by beginning with a
state in the middle of the problem, and a second time beginning with
the initial state. Thus the experimental group solved a subproblem
prior to attempting the main problem. The total number of moves, legal
and illegal, required to solve the first part of the problem (through
the first five moves in the state-space as dep’cted in Figure 4.2)
decreased significantly for the experimental group as commared to the
control group. Thus practice on a later part of the prcl.em improved
performance on the earlier part. However, this practice did not
improve the subsequent performance of the experimental subjects on
the later subproblem segment as compared with their own earlier per-
formance on this segment. Furthermore, there was negative transfer
for the control group from the first part of the problem to the later
segment-~-that is, their performance on the subproblem was signifi-
cantly poorer than that of the experimental subjects in their first
attempt, These and other results lead Thomas to conclude that there
may well have been lit¢tle correspondence between the external moves
of subjects in the state-space, and the sequence of knowledge states
entered.

Two other aspects of this paper are inferesting in relation to
the study of task structure variables. One is the description of the

7{3;}
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Table 4.1 The Problem Space of Newell and Simon

A problem space consists of:

1. A get of elements, U, which are symbol structures, each representing
a state of knowledge about the task.

2. A set of operators, Q, which are information processes, each
producing new states of knowledge from existing states of knowledge.

3. An initial state of knowledge, ug, which is the knowledge about the
task that the problem solver has at the start of problem solving.

4. A problem, which “s posed by specifying a set of final, desired
states G, to be reached by applying operators from Q.

5. The total knowledge available to a problem solver when he is in a
given knowledge state, which includes (ordered from the most trans-
ient to the most stable):

(a) Temporary dynamic information created and used exclusively
- within a single knowledge state.

(b) The knowledge state itself--the dynamic information about
the task.

(e¢) Aecess information to the additional symbol structures held
in LTM or EM (the extended knowledge state).

(d) Path information about how a given knowledge state was arrived
at and what other actions were taken in this state if it has
already been visited on prior occasions.

(e) Access information to other kmowledge states that have been
reached previously and are now held in LTM or EM. d

(f) Reference information that is constant over the course og
problem solving, available in LTM or EM.

Abbreviagtions: LTM long~term memory.
EM external memory
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relative "difficulty"” of each state, as measured by the proportion of
incorrect responses and the mean response time associated with that
state. A second is the discussion of stages which occurred during the
problem solving~-an estimate of three or four main stages is reached.
In an accompanying paper by Greeno, further evidence in gupport of , -
such stages is presented (Greeno, 1974). Subjects seem to organize
their sequences of moves into small subsequences or clusters, rather:
than making equally-paced, discrete moves. 'From the patterns of
pauses within the solution sequences, and differences between groups
receiving feedback information during problem solving, it is concluded
that the solution process is "organized forward"” in the state-space,
in contrast to the "retroactive organization" of the General Problem
Selver. ' , j

Reed, Ernst, and Banerji (1974) designed a transfer study based
on the missionary-cannibal problem and a wvariant called the Jealous
Husbands problem (see Problem 4.9 in this chapter). These problems
dif “er not only in context but in structure-—the states of the Jealous
Husbands problem stand in a many-to-one relationship with the states
of the missionary-cannibal problem. In one experiment, a group of
(adult) subjects solved the missionary-cannibal problem first, followed
by the Jealous Husbdnds problem (MC1-JH2); another group took the prob-
lems in the oppositeé order (JH1-MC2). Subjects were required to solve
each problem once, #n the given order, and to solve both problems
within a 30-minute time limit. The result was that no significant
reduction in time, total number of moves, or number of illegal moves,
took place between the JH1 and JH2 groups, or between the MC1l and MC2
groups. In a second experiment, one group soived the missionary-
- cannibal problem twice (MC1-MC2), and a second group solved the Jealous
Husbands problem twice (JH1-JH2). Significant improvement was found in
the time to solution for JH2 over JH1, and in the number of illegal
moves made by botH groups. A third experiment was like the first one,
except that subjects were told the relationship between the two prob-
lems, Here therefwas significant improvement for MC2 compared to MC1,
both in the time #o solution and in the total number of illegal moves;
however, there was no corresponding improvement for JHZ compared to
JHl1. Thus, there was significant trsnsfer from the Jealous hRusbands
problem to the missionary-cannibal only when the problem relationship
was pointed out, jand no significant transfer when the problems were

!

presented in the/other order.

The difficulty of the missionary~-cannibal problem and its
variants does nat originate from the complexity of the state-space
itself, but frog that of transforming one state into another; that
is, finding whi¢h moves are legal, In Section 3 of this chapter,
we shall see that this difficulty can be regarded as originating
from blind allebs in a8 more detailed, expanded state-space. This
leaves open the question of whether there would be effects similar
to those described ahove in problems where the moves from state to
state were mor# elementary, and where the difficulty rested in the
selection of o?e move from among several available at each step.

f
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Many proﬁlems of this sort are described later in the chapter; ome which
has been studied extensively using the state-space to graph behavior is
the Tower of Hanol (see Problem 4.11).

Goldin and Luger have proposed a set of hypotheses describing possi-
ble patterns in the paths generated by subjects through the state-space
of a problem such as the Tower of Hanoi, and Luger investigated these
hypotheses for adult subjects in detail (Goldin and Luger, 1975; Luger,
1973, 1976)., Included in the investigation is an analysis of the non-
randomness and goal-directedness of paths, the subgoal-directedness of
paths, the special role of certain "subgoal' states in establishing the
direction of the paths, stages in problem solving corresponding to the
solution of particular subproblems, and symmetry patterns in the paths,
The hypotheses are extended and discussed in the present chapter
(Section 3). In Chapter VII.C, Luger reports additional results in
which similar techniques are used to examine transfer between the Tower
of Hanoi problem and a variant, the Tea Ceremony problem.

Other variants of the Tower of Hanoi problem have been used by
Hayes and Simon (1975) to study the consequences of changing the prob-
lem statement upon the representations adopted by subjects. The tasks
used were eight different "'monster-globe" problems, presented verbally,
all of which have state-spaces which correspond to the 3-ring Tower of
Hanoi problem, The problems differ from each other in two ways, In
"PTransfer' problems, a monster or globe is moved from one place to
another, while in 'Change' problems, a monster or globe is changed in
size, Secondly, in "Agent" problems, the monsters move or change the
globes, while in "Patient" problems, the monsters move or change them-
selves. In one of the experiments, half of’the subjects solved a
Transfer problem followed by a corresponding Change problem, while the
other half solved the problems in reverse order. In a second experiment,
one group of subjects solved an Agent problem followed by a correspond-
ing Patient problem, while the other group solved the problems in
reverse order, The results of these studies showed that both the Agent~
Patient and the Transfer-Change variation affected the notation used by
subjects to solve the problem (i.e., the problem representation). Prob-
lems of the Transfer type were solved much mdre quickly than problems
of the Change type. In the first experiment,| transfer of learning from
Transfer to Change problems was greater than that for Change to Transfer
problems; that is, there was greater learning transfer when the less
difficult problem was solved first. This result is in contrast to the
results of Reed, Ernst, and Banerji mentioned previously, those of
Dienes and Jeeves discussed below, and those of Waters (Chapter VII.A)
and Luger (Chapter VII.C). Agent problems were found to be slightly
less difficult than Patient problems. In the second experiment, trans-
fer effects were greater than in the first experiment--and there was
greater learning transfer when the more difficult problem was solved
- firgt, A limitation of these experiments is that while the state-spaces
for all of the experimental problems are mutually isomorphic, the solu-
tion paths are not--that 1is, the initial state for the second problem
solved by a subject does not always correspond to the initial state for
the first problem solved by that subject,
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- Next let us mention some studies in which the use of problem state-
spaces has not entered into the characterization of problem structure.
Dienes and Jeeves (1965, 1970) have studied the processes used by
children and adults in learning sets of rules for predicting the
appearances of cards in a window, where a set of rules corresponds
to the structure of a mathematical group., The apparatus in the first
report consisted of a board with a window in which a number of different
symbols or cards could be placed, The subject was glven the same cards
as those which could appear in the window, On each turn, the card which
appeared in the window depended on the card which was there previously,
and the card that was played by the subject, Each subject played cards
in succession and made predictions, in an attempt to learn the "rules
of the game." The underlying structures corresponded to: (a) the two-
element group, (b) a symmetrical two-element Structure (not a group),
(c) the cyclic group with four elements, and (d) the Klein group. In
the second report, the study of transfer, more complicated groups were
introduced, and an electrical machine replaced the manual apparatus.

One feature of these studies which is of interest to us is the
definition of strategy scores, based on actual patterns of choices made
by subjects. For example, an operator score is obtained by taking the
total number of cards played when the same card is being played three
or more times in succession, divided by the total number of freely
selected instances. This score is intended to reflect use of an opera-
tor strategy, in which the card played is "operating' on the card in
the window. For the four—element groups, a patterm score is obtained
by partitioning the table of card-pairs into three sections correspond-
ing to frequently-mentioned patterns. Runs of three or more card
combinations from the same section count toward the pattern score (for
technical reasons, runs are counted here even if they are interrupted
by single correctly-predicted instances from other sections). There
are some logical difficulties with these strategy score definitions--
for example, a subject may find.-in the case of the Klein group that a
particular card cannot be played three times in succession without one
of the plays being a repeat of a previous play (and thus, presumably,
unnecessary). Such difficulties are reminiscent of similar problems
which have arisen with Bruner, Goodnow, and Austin's strategy scoring
system for concept attainment tasks, discussed in Chapter VII.A
(Bruner, Goodnow, and Austin, 1956). It also seems to be the case
that the same sequence of card choices can count toward more than one
strategy score~—for example, repeated plays of the card corresponding
to the identity element in the group. Despite these difficulties, it
is striking that the main strategies seem to emerge naturally from the
underlying group structures, and in some sense are "intrinsic" to the
problems themselves, -

Dienes and Jeeves compare the strategies used by subjects (as "
measured by strategy scores) with the retrospective evaludtions of the
subjects. Three categories of evaluations were established: operator,
pattern and memory. A subject was considered to give an operator
evaluation if he or she described the card played as somehow "acting
on' the card in the window. A subject was considered to give a pattern
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evaluation if he or she attempted to split up the combinations of cards’
played into subsets or regions.  The memory evaluation consisted of the’
assertion that the subject had simply memorized all of the possible
combinations. Based on these retrospective evaluations, subjects could
be classified as "pure operator," '"combined operator-memory,'" and so
forth.

Among the main results are the following: (a) a positive relation-
ship between the subjects' evaluations and their measured strategy scores;
(b) an association of particular evaluations with success in the tasks
in the following order (from most successful to least successful): (1)
operator, (2) pattern, (3) memory; {(c) a greater ability among adults
than children to give explicit evaluations; (d) a consistency in the
types of evaluations given by the same subject solving a two-element
game and a four~element game; (e) more explicit evaluations tending to
occur when the more complex task is given first than when the simpler
task is given {irst,

In the study of transfer effects, Dienes and Jeeves define three
kinds of structural relationships which may exist between tasks:
embeddedness, overlap, and recursion (including both generalization and
particularization). These relationships are intrinsic to the group
structures which underlie the tasks-=-""embeddedness" refers to the
situation where one group is isomorphic to a subgroup of the other;.
"overlap" to the situation where the two groups contain isomorphic sub-
groups; and "recursion" to the situation where the two groups are
generated by similar procedures (for example, cyclic groups of differ-
ent orders). The relationships are not mutually exclusive--often two
groups are related to each other in more than one way.

A motivating theme of the transfer study is the deep-end hypothesis.
This is the conjecture that, under appropriate conditions, learning can
be accelerated on a sequence of tasks by presenting the more difficult
task first: this is analogous to learning to swim by entering the deep
end of the pool. We have already seen some confirmation of this con-
jecture in the study by Reed, Ernst and Banerji, and conflicting
results in the study by Hayes and Simon., In the present book, the
reports by Waters and by Luger tend to support the conjecture, Among
the main results of Dienes and Jeeves with respect to transfer are the
following: (a) children particularize with less difficulty than adults,
and generalize with greater dirfficulty; (b) children and adults both
find overlap more difficult than generalization, and embeddedness much
more difficult than generalization; (c¢) children are more successful
when the more difficult task is presented first than when the less
difficult task is presented first, at least when the relationship is
that of recursion,

In 8 follow-up to the work by Dienes and Jeeves, Branca and Kil-
patrick (1972) employed three tasks. The first task replicates the
card game employed.by Dienes and Jeeves, having the structure of the
four-element Klein group. The second task consists of a wired board
with four light-bulbs and four switches, labelled with the names of
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planets. One bulb is 1lit at the beginning of the task; the next bulb
to light up depends upon the bulb previously 1lit and the switch which
is thrown. The second task also embodies the structure of the Klein
group. In the third task, both the embodiment and the structure are
changed. The task consists of a map of the United States on which
geveral cities and highways are marked. Highways can be closed, open
in one direction, or open in both directions, The subject starts in
one city at the béginning of the game, and must learn the condition
of each highway, This is done by choosing another city, and being
informed which city the subject must pass through first if the most
direct route to that city is taken.

Branca and Kilpatrick found that successful subjects’ retrospec-
tive evaluations show more consistency than change in passing between
the first two tasks. Thus the effect of the change of embodiment was
not significant for successful subjects' retrospective evaluatioms,
Howeve~, in contrast to Dienes and Jeeves' findings, subjects' retro-
spective evaluations frequently did not correspond to their actual
behaviors as measured by strategy scores. In addition, contrary to
expectations, higher operator strategy scores were associated with
more trials to solution. These discrepancies are traced by the authors
to the fact that Diemes and Jeeves' tasks are not truly "free selection"
tasks. The subjects are constrained in the choice of which two elements
they can combine on any turn, by the fact that one card is already show-
ing in the window of the apparatus., The strategy scoring rules depend
heavily on this feature, Branca and Kilpatrick suggest that because of
this constraint, subjects are not free to implement any desired strategy;
and that in future experiments, either new scoring rules should be
established or the game should be modified to permit free choice of
both elements. This study 1llustrates firther how strategy scores
depend for their validity on intrinsic task structure,

We conclude this section with mention of some studies which have
examined structure variables in relation to problem difficulty. 1In
the domain of routine arithmetic problems, multiple linear regression
analyses of problem difficulty and laten:y of response have been
carried out (Suppes, Hyman, and Jerman, 19663 Suppes, Jerman, and
Brian, 1968), Data for these studies were obtained from computer-
assisted exercises in additiom, subtraction, and multiplication
presented to elementary school children. The analysis for both the
addition and subtraction problems showed the variable NSTEPS to be
the most significant for predicting the oercent of errors and the
latency of response. This variable corr2sponds to the number of steps
needed to solve the problem by means of 1 standard algorithmic proce-
dure: it thus makes reference not only t> the task, but to the method
of solution., NSTEPS is broken down into three components: TRANSFOR-
MATIONS, OPERATIONS, and MEMDRX; and these were examined for order of
importance in the case of addition problems, Tt was found that MEMORY
ranked first, followed by TRANSFORMATION3, and lastly OPERATIONS, Other
varisbles included in the analysis were for addition problems MAGSUM
(the magnitude of the sum) and MACSMALL (the magnitude of the smallest
addend; for subtraction problems MAGDIF (the magnitude of the differ-
ence) and MAGSUB (the magnitude of the subtrahend).
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In the domain of verbal problems, it has been reported that a prob-
lem is less difficult when the data are presented in the order in which
they are used to solve the problem than when they are presented in
reverse order (Burns and Yonally, 1964; Rosenthal and Resnick, 1971).

Multiple linear regression studies have found the following task
structure variables to affect significantly the difficulty of verbal
problems: OPERATIONS (the minimum number of different operations
required to solve the problem correctly) and variations in which weights
are assigned to the occurrences of particular arithmetic operatiomns;
NOMC2 (the total number of multiplication carries); and QUOT (the

- number of digits in the quotient). Also included but‘ less importantly

were STEPS (the minimum number of steps required to solve the problem
correctly); COLC2 (a count of 1 for each column and each regrouping in
addition and subtraction); Si (a count of 1 for each displacement of

the order of operations in successive problems); and S2 (a count of 1
for each displacement between the order of operations required to solve
the problem and that given in the problem statement)(Jerman, 1971;
Loftus, 1970; Suppes, Loftus, and Jerman, 1969). An extensive discus-
sion of the linear regression model has already been provided in Chapter
II. :

A number of researchers have attempted exhaustive classifications
of arithmetic problems into narrow classes, which would be homogeneous
in the sense that if a subject could solve one problem in a class, he
or she could solve any problem in that class (Durnin, 1971; Ferguson,
1969; Gramick, 1975; Hively, Patterson and Page, 1968). Of interest
in these classifications is the use of equivalence classes of problems,
defined with reference to the path or directed graph through an
algorithm that each problem requires., Gramick, for example, formed
such equivalence classes for eight different subtraction algorithms,
five based on the 'decomposition' (or "borrowing") method, and three
based on the "equal additions'" method. She then formed the mutual
intersections of these equivalence classes with each other and with a

"get of "item forms" derived from those of Hively, Patterson, and Page,

to obtain 39 "problem types' for subtraction. Thus, two problems of
the same "type" required the same path through all eight algorithms,

as well as falling into the same "item form'" categories. Gramick used
a diagnostic instrument based on these "types' to determine that
children in need of remedial instruction whose initial behaviors more
closely resembled the structure of a particular algorithm, benefited
more from instruction in that algorithm than did children whose initial
behaviors were at variance with its structure.

In this highly abbreviated survey, many studies of importance have
been omitted, We have tried to touch on the main ideas which are cen-
tral to the present chapter. The main point of this chapter is to
develop the use of problem statesspace representations as a unifying
framework, in which task structure variables such as those mentioned
above can be defined with precision, and their consequences for
problem-solving outcomes investigated systematically.
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2, The Definition of Task Structure Varisbles

State~Space Analysis of Problem Structure

As defined by Nilsson, a state-space for a problem is a set of dis=-
tinguishable problem configurations, called states, together with the
permitted steps from one state to another, called moves. A particular
state is designated as the 7nitiaql state, and a set containing one or
more states which can be reached from the initial state by successive
moves 1s singled out as the set of goal states.

Let us illustrate thisjcancept with several elementary examples of
well-known problems, and at the same time introduce certain task struc-
ture variables.

4.1 You are standing at the bank of a river with two pails.
The first holds ewaetly three gallons of water, the
second exactly five gallons, and the pails are not
marked for measurement in any other way. By filling
and emptying pails, or by transferring water from pail
to pail, find a way to carry exactly four gallons of
water away from the river,

A state of this problem can be represented by a pair of numbers,
standing for the number of gallons in the respective pails, The ini-
tial state is then the st#te (0,0); a goal state is any state of the
form (x,4); and the entire state-space is depicted in Figure 4.1,
Note that there are two distinct solution paths: a path of six moves
(seven states) leading to|the goal state (3,4), and a path of eight
moves (nine states) leadihg to the goal state (0,4). Note also that
not every move is reversible-~for example, it is permissible to move
from (1,5) to (0,5) direqtly, by“emptying the first pail; but it is
not permissible to move from (0,5) to (1,5).

The missionary-cannibal problem was introduced in Chapter II
(Problem 2.7). 1Its u-e to study transfer of learning was discussed
in Section 1 above.

4,2 Three missiongries and three cannibals are onm one bank
of a river, with a rowboat that will hold at most two
people, How ¢an they cross to the other side of the
river, in such a manner that the missionaries are never
outnunbered by camnibals on either riverbank?

A state of this prob1e$ corresponds to a configuration of missionaires,
cannibals, rowboat and river., Letting M stand for missionary, C for
cannibal, * for the rowboat and : for the river, we can conveniently
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Figure 4.1 State-Space for the Problem of the Two Pails
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'represent the initial State by the configuration (MMMCCC*:) and the

goal state by the configuration (:MMMCCC*). From the initial state,

it is permissible to move to (MMCC:MC*), (MMMC:CC*), or (MMMCC:C*);”but
a move to (MCCC:MM*) is 710t permitted, since the cannibals would then
outnumber the missionaries three to one on the left bank of the river.

Figure 4.2 depicts the complete state~space for this problem,
which is actually quite small, Every move is reversible, and the
state~space is completely symmetrical when reversed. Figure 4.2
also includes forbidden states, which violate the problem comdition
that the cannibals are not to outnumber the missionaries on either
riverbank, These forbidden states may importantly affect the problem-
solving process and the overall difficulty of the problem.

The following 1s another variation of the problem.

4.3 Three missionaries and three camibals are on one bank
of a river, with a rowkoat that will hold at most two
peoplz. Only one of the eannibals knows how to row.
How can they cross to the other side of the river, in
such a maymer that missionaries are never outnumbered
by eammibals on either riverbank?

This version of the missionary-cannibal problem is more complicated
than the preceding version, because of the additional condition that
only one of the cannibals knows how to row. Let us develop the state-
space for this problem so that the similarities and.differences between
the two versions are highlighted, In Figure 4.3, the cannibal who
knows how to row is represented by C, and the other cannibals by C.
Figure 4.3 should be contrasted with Figure 4.2,

It is, of course, possible to characterize the fact that the
second version of the missionary-cannibal problem is more complex by
means of the problem statements only (i.e., by surface analysis)--
the latter problem statement contains more words, more sentences, and
one additional problem condition. However, the state-space analysis
permits a much more detailed characterization of the increased com-—
plexity by means of the following task structure variables:

(a) Total mwmber of states in the state~-space: Problem 4,2 has
16 states, Problem 4.3 has 24,

(b) Length of the shortest solution path: Problem 4.2 requires
11 steps to reach the goal state from the initial state, .
while Problem 4.3 requires 13 steps.

(c) Number of blind alleys: A blind alley is defined to be a
state from which there is no legal move except (possibly)
the reversal of the immediately preceding move, Then Prob-
lem 4,2 has only one blind alley, namely the state (MMMCC:C¥%)
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Figure 4.2 State-Space for the Problem of the Missionaries and the Camnibals

(MMMCC:C*) ¢———>» (MMMCCC*:) initial state

‘..Q(

(C*:MMMCC) ¢&—> (:MMMCCC*) goal state

(MMMC:CC*)

(CC*:MMMC)

'_.-‘l
/

N
N/

(MMMCC*:C)

!

(MMM:CCC*)

¢

(MMMC*:CC)

!

(MC:MMCC*)

!

(MMCC*:MC)

!

(CC:MMMC*)

!

(CCC*: MMM)

!

(C:MMMCC*)
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(MMCC:MC%)

(MC*: MMCG)

734-

forbidden moves

-

(MMCCC:M*)
(MCCC: MM*)

(MMCCC*:M)

(MCC:MMC¥)
(MMC:MCC*)

(MMC :MCC*)
(MM:MCCC¥*)

(MCC* : MMC)

(MCCC*:HM)‘

(MMC:MCC*)
(MM :MCCC*)

(MCC¥ :MMC)
(MCCC*:MM)

(MMC*:MCC)
MCC* : MMC)

(M:MMCCC*)

(M* :MMCCC)
(MM*:MCCC)
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Figure 4.3 State-Space for a More Complex Variation of the Missionary-
Carmibal Problem |

(MMMCC: C*) ——> (MMMCCC*:) initial state

/SN T

(MMMC: CC*) (MMCCT:MC*) (MMCC :MC*)
NS !
(DMMCC*:C) (MMMCC*:C) -
-
QDD{: CCC#)
:
(MMMC*:CC) MMC*:CC)
¢ !
(MC: MMCC*) (MC:MMCC*)
: “‘f,ef"’g' P
(MMCC*:MC) ~ (MMCC*:MC)
} !
(CC:MMMC*) | (CC:MMMC*)
| !
(CCCT*:10M)
!
(E}M??cc*) (C:MMMCC*)
(MC* :MMCC) (MC* :mch)f \(CE* :MVMC)

vV /

goal state (:MMMCCC*) e——p (C*:MMMCC)
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reached directly from the initial state, Note that we do not
count the state (C*:MMMCC) as a blind alley, since there is
no way to arrive there without first entering the goal state
(:MMMCCC*). Problem_4.3 has four blind alleys: the states
(MMMCC:T*), (MMMCC*: €), and most importantly (MMMC*:CC) and
(CC: MHM*C)

(d) Number of possible first moves: three for the first version
of the problem, four for the second.

Problem complexity variables suéh as these may reasonably be

' expected to be predictors of problem difficulty. In investigating such

a question, it may also be of interest to define additional complexity
variables based on those mentioned above; for example:

{e) The nwmber of goal states is equal to one for both problems.

(£) The ratio of the number of goal states to the total nwmber of
states 1s 1/16 for the first problem, and 1/24 for the second.

The next set of problems further illustrates the use of structure
variables, and highlights their necessity in the description of intrin-
sic problem complexity.

4.4a Two nickels and two dimes are placed in a row, the nickels
on the left and the dimes on the rzght, with a single space
between them, as shown:

NN DD

Nickels move only to the right, and dimes only to the Zef%.
A coin may move inte the adjacent empty space, or may Jump
over one coin of the opposite kind into the empty space.
Show how to exchange the positions of the nickels and the
dimes.

4,4b Three nickels and three dimes are placed in a row, ...

4,4c Four nickels and four dimes are placed in aq row, ...

For these three problems, by any reasonable definitions, the values of
syntax, content and context variables will be identical., Consequently,
the obvious differences in complexity require the use of structure
variables for their quantitative characterization. Figure 4.4 depicts
the state-spaces for (a) the trivial problem of one nickel and one
dime, (b) the problem of two nickels and two dimes, and (c) the problem
of three nickels and three dimes. Each state-space is symmetrical when
the move of a nickel to the right is replaced by the corresponding move
of a dime to the left, and Figure 4.4(c) represents only a little more
than half of the state-space. Each problem thus possesses two solution
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Figure 4.4 State-Spaces for the Problems of Exchanging Nickels and Dimes

(a) One nickel and one dime:

(N_D) initial state

/" o .
' ) (ND_)
! t
(DN_) (_DN)
b '

(D_N) goal state

(b) Two nickels and two dimes:

(NN_DD) initial state
a~ ~»

(_NNDD) «——— (N_NDD) (NND_D) ~———— (NNDD_)
{ } :
(NDN_D) (N_DND)
o = - .
(NDND_) (ND_ND) (_NDND)
o o N ~a
(ND_DN) (NDDN_) (_DNND) (DN_ND)
‘ ~\\‘\; l ‘ ‘#‘#‘- }
(_DNDN) (NDD_N) '(D_NND) ' (DNDN )
N _ o
(D_NDN) " (DND_N)
~ o
(DDN_N) (D_DNN)
“~ -

(DD_NN) goal state

fRIC - 137

Aruitoxt provided by Eic:
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Figure 4.4 (continued)

(¢) Three nickels and three dimes:

initial atate

(NNN_DDD)
oo ~
(_NNNDDD) «———— (N_NNDDD) <«———— (NN_NDDD) (NNND_DD) —»
(NNDN_DD) (NN_DNDD)
- ™~ - 'Y
(NNDNDD_) <«——— (NNDND_D) (NND_NDD)
- - N
(NND_DIND) f(_mim_n) (n_nfunn)
¢ ™ (\XDD_ND) (NNDDND) (_NDNNDD)\‘
(N_DNDND) ¥ $ ¥
o~ . (NNDDDN_) (NNDD_DN) (DN_NNDD).
(_NDNDND) (ND_NDND) ‘(mgm N) (D mtnnn)‘z
e e N - - o
(DN_NDND) (_DNNDND) (NDDN_ND) (ND_DNND)
o N w , TN |
(DNDN_ND) (D_NNDND) (NDDNDN_) (NDD_NND) (_ONDNND)
T~ : ' }
(DNDNDN_) (DND_NND) (NDDND_N) (D_NDNND)
~ T~ ) i
(DNDND_N) (D_DNNND) (NDD_DNN) (DDN_NND)
N T~ ' X -
(DND_DNN) (DD_NNND) >< (NDDD_NN)
e ~Na
(DNDD_NN) (D_DNDNN)
~a
(DD_NDNN)
\ /
(DDDN_NN) (DD_DNNN)
~ «
(DDD_NNN)
goal state
17%
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(d) So#ution paths for the problem of four nickels and four dimes:

t
4
|

* (NNN_NDDDP)
(NNNDN_DDD)

& |
(NNNDND_DD)

b
(NNND_DNDD)

(NN_DNDNDD)
(N_ND&DNDD)
(NDN_;DNDD)
(Nnnn::__nnn)
(NDN‘J);DN__D)
(N‘DND;DND__)

¢
(NDNDND_DN)

¢
(NDND_DNDN)

¥
(ND_DNDNDN)

¢
(_DNDNDNDK)

b

_DDDD)

-
--{NNNND -DDD)

¢
(NNN_DNDDD)

b
(NN_NDNDDD)

¢
(NNDN_NDDD)

+
(NNDNDN_DD).

¢ :
(NNDNT'ND_D)

(DD _DD)
<m_§nnnn)
(N__DNI%NDND)
(_NDN%)NDN’D)
(DN_N%)NDND)
(DNDNiNDND)

)
(DNDNDN_ND)
+
(DNDNDNDN_ )

b

!/

Ly

2y’

| (n__:m‘mmm (nunxgnn_u)
| (nnn_;mm) (DNDN;_DNN)
_ (nnm§_mu) (DND_DNDNY)
(nmmgmn_N) (n__nn*fmnm)
(nnnngm_m) (DD_N;NDNN)
(nnnninm) (DDDNiN‘DNN)
(DD__DI{FTDNNN) ZDDDN%N_NN)
| (nnnjﬁnm) (DDDN;_NNN)
(nnnn'lﬁ_mm (nnn_‘ﬁm)
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paths which are equivalent by virtue of this symmetr?. The’state-space
for Problem 4.4¢c is toe large to diagram conveniently, but the solution
paths are indicated in Figure 4.4(d).

There are many interesting patterns which can be found in the solu-
tion paths for these problems (Charosh, 1965; Rising, 1956). Structure
variables which emphasize the differences in complexity include the

following: o T
(a) Total number of states in the state-space:

1 nickel and 1 dime 6
2 nickels and 2 dimes 23
3 nickels and 3 dimes 72

(b) Length of the shortest solution path:

1 nickel and 1 dime 3 steps
2 nickels and 2 dimes 8 steps
3 nickels and 3 dimes 15 steps

n nickels and n dimes (n+1)2—{1 step

. \ \
(¢) Number of blind alleys: \

1 nickel. and 1 dime 0 |

2 nickels and 2 dimes 4

3 nickels and 3 dimes 13

Variables which are the same for all versions of these problems include
the number of possible first moves (2), the number of goal states (1),
and the number of solution paths through the state-space (2),.

A comment is in order here. The discussion in this chapter focuses
on the states of a representation (''nodes') and the permitted moves or
transitions between them ("arcs'). In many problems, the moves can be
characterized by means of a finite set of operatorg from the set of
states into itself. More precisely, each operator possesses a domain
of states to which it is applicable, :nd a range of successor states;
thus it is a partial function, Finding a soluticn path corresponds to
finding a sequence of operators which, when applied successively to the
initial state, produces a gbdal state,

Ir. Problem 4.4, we might define the four operators ''moving right
with a nickel,” "moving left with a dime," "jumping right with a
nickel,”" and "jumping left with a dime.”" Each of these operators
applies only to certain states, and is inapplicable to others. When an
operator -does apply to a state, it generates a unique successor state.

. Given a set of states and a set of operators, we can define a move

to be permitted from state s} to state sp if and only if there exists an
operator which ‘maps s1 into s9; :hus we can always recover the state-

. J : 151fl
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gspace as & collection of configurations and permitted mov L (a directed
lattice). However, different families of operators may cjrrespond to
the same permitted moves among the states (for example, the states may
be grouped into domains in different ways for different families of
operators). Problems 4.4 are equivalently characterized $y two
operators, "moving or jumping right with a nickel" and “mpving or

‘ jumping left with a dime." \/”

Often the set of states in a problem rerresentation is extremely
large. Nevertheless, one can fully characterize the state-~space by
specifying a list of operators together with an initial state,.
Operators are also essential to the characterization of algorithms
which may be used to solve families of problems, But, except where
otherwise specified, the structure variables discussed in this chap-
ter are defined without reference to any particular choice of a set
of operators from among the possible choices.

For an N~player game, the structure analogous to the state-space
is the game tree or game graph. Here the opposing players typically
have disjoint sets of goal states, and the information as to which
player has the move must, if applicable, be included in the descrip-
tion of a state. A problem may then be regarded as a l-player game.
A very simple version of the well-known game of '""Nim" provides an
example. 4

4.5 In 2-pile Nim, three matchsticks are placed in one pile,
and two in another., The object of the game is to be the
player to remove the last mateh., Each player, in tum,
may take away as many matchsticks as desired, but only
from one pile.

The game graph for 2-pile Nim is represented in Figure 4.5. Each
state is designated by a pair of numbers representing the matches remain~
ing in the respective piles, and by a letter, A or B, denoting the
player whose turn it is to move, Again, it is possible to define
variables describing the complexity of the game, such as the total
number of states in the state-space, the maximum number of moves
possible in a play of the game, the number of zZoal states for each
player, and so forth.

We saw earlier that a concern of artificial intelligence research
has been to develop efficient search algorithms within the state-spaces
of problems or games, However, the emphasis of this chapter is not the
development of techniques for more sophisticated computer problem
solving, but the study of problem-solving outcomes ds they are affected
by intrinsic problem structure. For this purpose, it seems worthwhile
to select problems whose intrinsic structure is sufficiently complex to °
be interesting, but sufficiently simple so that the task structure
variables can be tompletely determined, That is, problems used for
the study of problem solving should be thoroughly analyzed prior to

14}
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Figure 4.5 Game Graph (State-Space) for 2-pile Nim

(32;A) _initial state

7

(22;B) (31;B)

(02;A) ‘ o CZI;AS €20;A) . (S0;A)
KA ‘

e "‘( Q\.{’
(11;B) (20;B) *(10;B)
Z

. (123B) (30;B)

(01;B)®

/7 ’
(01:A) (00;A) (10;A)
\B'j s"‘“/
(00;B)”*
A's goal
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the study, so that in the course of research we can gain insight into
the problem solvers, and not merely additiomal insight into the struc-
ture of the tasks. Likewise, if the teacher is dware of problem
structure, instruction in problem solving can be guided more effec-
tively.

State-Space Homomorphisms and Isomorphisme _ ... = = . . S —

»

Define two state-spaces {or game grarhs) to be Zsomorphic if there
is a mapping from the states of the first onto the states of the second,
having the following properties: (a) the mapping is bijective (a one-
to-one correspondence); (b) a move from one state to another is per-
mitted in the first state-space if and only if the corresponding move
is permitted in the second; (c) the initial state of the first state-
space is mapped onto the initial state of the second; and (d) a state
is a goal state in the first state-space if and only if the correspond-
ing state is a goal state in the second. Occasionally we shall speak
loosely about two state-spaces being isomorphic when only conditions
(a) and (b) are intended: for example, when a variety of initial states
or goal states are being considered.

-

Representations of problems and games which have isomorphic state-
spaces will have identical values of the structure variables which were
defined above. Any algorithm which works to solve such a problem or
win such a game within one representation will have a corresponding
algorithm within the isomorphic representation,

We mentioned earlier that different problem solvers may formulate
different representations from the same problem statement. However,
if two such representations are isomorphic, they can be said to have
the "same" structure. One individual may represent the missionary-
cannibal problem with nickels and dimes, while another uses M's and
C's as we did; the state~spaces for these representations are obviously
isomorphic. The equation 2x + 3x = 10 may be obtained by one individual
from an algebra word problem, while another individual writes 2A + 3A =
10. Again the state-spaces are isomorphic--for any equation which can
be validly obtained from 2x + 3x = 10, there is a corresponding equa-
tion which can be validly obtained from 2A + 3A = 10, On the other
hand, a "table of values” representatien for finding x has.no natural
correspondence of states with an algebraic representation.

Thus the valid representations of a given problem fall into equiv-
alence classes or isomorphism classes. Whan we speak of problem
"structure variables,"” we are actually dis:cussing a particular iso-
morphism class of representations of the problem. The usefulness of
structure variables depends on the fact that, for most unambiguously
stated problems, relatively few classes of representations will find
actual use by a given population of problem solvers,

A more interesting aspect of state-space isomorphisms is the fact
that quite distinct problems may turn out :o have isomorphic represen-
tations, Consider for example the following games.
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In the game of Number Scrabble, the tntegers 1, 2, vuuy
9 are written on slips of paper. The opposing players
take turns, each selecting one number for himself or
herself. Neither pZayer may sclect a number already

" taken. The goal 18 to obtain exactly three numbers which

add up to 15. _ (Stmon, 1969)

In the game of Jam, each player has q dszérent color
penecil. The players in turm qolor a straight line in
the diagram below along its entire length, The object
18 to obtain three lines in one’s oun color intersecting
at any single point.

Diagram for the game of Jam: ,

In the Horse Race game pictured below, there are eight horses
on the starting line, and nine cards to be picked one at a
time by the two players. Each card has the numbers of
several horses. When a player picke a eard, the following
things happen: 1if a horsgefs unowned, that player takes
possession of it and advances 1t one. If a horse is already
owned by that player, it advances one, If a horse is owned
by the player's opponent, it is disqualified, The first
player to bring home a horse wins,

Cards for the Horse Race game: a. 1 3 6 d, 37 g. 238
b, 4 6 e. 1247 h, 4 8
e, 256 f.57 i, 158

Diagram: Horse ¥

START ’

A ————
- —

FINTSH
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In the diagmm, for purposes of illustration, card 'e”
has been played by the first player, and ecard '"g" by
the second,

The three preceding games, which differ from each other radically

in syntax, content, and context, are sll isomorphic in the sense of

state~space strudture to the familiar game of tick-tack-toe, The
isomorphism of Number Scrabble with tick-tack-toe is illustrated by

the well-known magic square in Figure 4.6(a). The game of Jam is

based on the projective dual of tick-tack-toe, in which points corres-
pond to lines and lines to points; the correspondence with tick-tack-
toe is noted in Figure 4.6(b). Finally, each card in the Horse Race
game corresponds to a tick-tack-toe square, and each horse to a straight
line., The cards have been constructed so that each horse appears on
exactly three cards; the correspondence with tick-tack-toe is tabulated
in Pigure 4.6(?).

In Chaptef I, Figure 1,1, it is noted that problem solving may
involve the use of related problem statements or problem representa-
tions. Isomorphism of problem representations is the closest possible
relationship from the standpoint of structure, Solving a problem iso-~
morphic to a given problem may be easier due to differences in syntax,
content, or cpntext, but it will be no easier in structure (and no more
difficult). ext we consider less stringent structural relationships
between prob#ems.

A gener lization of the idea of state~space isomorphism is that
of state-space homomorphism, The concept of homomorphic problems has
been approa¢hed in different ways; the development here is the author's
own. ;

Suppoge that we have two state-spaces S and T, A homomorphism is
a mapping z from S inte T, not necessarily one~to-one sud not necessar-
ily onto, which satisfies the following® 41f s; and sy are states in §
such that;there is a legal move from s] t3 &3, then either there is a
legal move in T from f(s;) to f£(s2), or eise f(s;) = f(s2). A homo-
morphism is goal-preserving if it maps goal states of S into goal
states of/ T. We shall now define some special kinds of homomorphisms
and look;%t some examples, :

state-space to the second is required to be one-to-one. For example,
considey the game of 2-pile Nim in which the initisl state has two
matchsticks in each plle (Figure 4.7). The states of this game may
obviously be placed into one-to-one correspondence with a subset of
the states in the more complex -game which is generated by an initial
state Having more matchsticks, more piles, or both. (Compare Figure
4.7 with Figure 4.5.) Such a correspondence defines an injective

j - :
(a;L For an injective homomorphism, the mapping f from the first

homomorphism.
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Figure 4.6 Games Iscmorphic to Tick-tack-toe

(a) Magic square illustrating the isomorphism with Number Scrabble:

[~

4 3 8
9 5 1
2 7 6

(b) Correspondence between points of Jam and lines of tick-tack-toe:

\v‘
1 3 4 5 J
~ 3 b ’
6 —
7 —
8 ~»
/

{c) "Horse Race' cards correspond to tick-tack-toe squares; horses
q
to tick-tack-toe lines.
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Figure 4.7 A Symmetrical Subspace of the 2-pile Nim State-Space

(32;R)
infitial
state
(13;B) (22;B) < _ (30;B)
(02;A) (12;A) (11;A) (21;A) (20;4A) (30;A)

(01;8) (10;B)

(01;A) (00;A)
B's goal

(00:B)
A's goal
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may be mapped into the states for the problem of two nickels aad two
dip~~ by adding a nickel to the left and a dime to the right off any
given configuration. Likewise the states for the problem of
nickels and two dimes may be mapped into the states for the pro lem
of three nickels and three dimes, and so forth. Each of these
mappings defines an injective homomorphism. Note that in this ekample,
the goal state for the less complex problem is not mapped into the goal
state for the more complex problem, as it was for the case of the| Nim
games. TFurthermore, the goal state for the less complex problem 1is

not even mapped into a state which is on a solution path for the more
complex problem; it is mapped into a "blind alley" state, Thus these
are not goal-preserving homomorphisms,

(b) We define a surjective homomorphism to be one for which the
mapping f from the first state~space to the second is an onto or sur-
jective mapping. That is, ‘or every state t in the second state~-space
T, there exists at least one state s in the first state-space §, such
that f(s) = t., 'For example, consider the two versions of the missionary-
cannibal problem illustrated in Figures 4.2 and 4.3. Define a mapping f
from a state in F&ure 4.3 to a state in Figure 4.2 which associates to
every state in the more complex state-space the state obtained by
removing the bar above the C. For instance, the two states (MC :MMCC*)
and (MC:MMCC*) are both mapped into (MC:MMCC*) by £, The mapping f is
thus in general many-to-one; but it clearly preserves the structure of
legal moves in the sense that if a move is legal between two states in
Figure 4.3, :‘en it is legal between the corresponding states in Figure
4.2, This is a surjective homomorphism because every state in Figure
4.2 has at least one state in Figure 4.3 associlated with it by the
mapping f.

Given initially the more complex statement of the problem, Problem
4.3, one might decide tosolve first the ''related"” problem obtained by
neglecting the condition that only one cannibal knows how to row,
Problem 4.2..  The problem statements are related in that one condition
has been removed. The goal-preserving surjective homomorphism des-
cribed above characterizes the "relatedness" of the problem structures
which results.~

Next consider the "Jealous Husbands' problem discussed in Section
1 (Reed, Ernst, and Banerji, 1974),

ol
e

4.9 Three husbands and three wives are on one bank of a
. river, with a rowboat that will hold at most two people.
How can they cross to the other side of the river, in
such a momer that no wife 18 ever in the presence of a
man other than her husband on either riverbank, unless
her husband is also present?

T4y
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We have reworded the problem in order to highlight the parallels and
differences with Problem 4.2, The three husbands correspond to the
three missionaries and the three wives to the three canuibals. -How-
ever, interpretation of the condition that no wife be left with a man
other than her husband, unless her husband is also present, seems to
require the problem solver to keep track of the individual identities
of the husbands and the wives, Such a representation of the problem
leads to a fairly complex state~space, a small portion of which is
‘depicted in Figure 4.8, In this figure the husbands have been
labelled Hy, Hy, H3, and their respective wives Wj, W2, Wj3.

Define a mapping £ from a state in Figure 4.8 to a state in
Figure 4.2 which associates to every state in the more complex state-
space the state obtained by removing all the-subscripts, and
relabelling H by M and W by C. It is evident that f defines a many-
to-one correspondence of the states in the two representations, and
that every state in Figure 4.2 has at least one state in Figure 4.8
to which it is associated by £. To deduce that f is a homomorphism
(i.e., that it preserves the structure of legal moves), it is necessary
to reason that if no wife is left with a man other than her husband
unless her husband is also present, then the wives can never outnumber
the husbands on either riverbank. Thus if a move is legal in Problem
4.9, the corresponding move will be legal in Problem 4,2, Note that
the converse of this statement is false-~it is quite possible for a
proposed move to be illegal in the Jealous Husbands problem, with the
corresponding move in the missidnary-cannibal problem perfectly legal.
Again, we have a goal-preserving surjective homomorphism which charac-
terizes the "relatedness’ between the two problems.

Thus far we have observed that an injective homomorphism allows
us to view one problem or game as a subproblem or subgame of another;

while a surjer~tive homomorphism allows us to describe the relation-
ship of a problem with a related problem obtained by disregarding some
attribute of the states of the originmal problem.

Finally we shall define a less stringent notion of 'relatedness”
of problem structure than that of a homomorphism. Sugbose that we
have two state~spaces S gnd T. A weak homomorphism will be a“mapping
f from S into T, not necessarily one-to-one or onto, which satisfies
the following: if sy and s; are states in § such that there is a
legal move from s} to sp, then either f(s;) = f(s;), or there exists a
sequence of legal moves.in T from f(sy) to f(s3) such that the inter-
mediate states are not in the image of f£f. That is, there is a legal
path in T given by (f(sy), ty, ...y tn, £(82)), and there are no states
in § mapped into tj, ..., tpe It is clear that every homomorphism is a
weak homomcrphism, since (f(s1), f(s2)) qualifies as a path in T having
no intermediate states. Furthermore, & weak homomorphism that is sur-
jective i{s alsoc a homomorphism. A weak homomorphism from S into T
which is Iinjective will be called an embedding of S into T.



=134~

Figure 4.8 A Portion of the State-Space for the "Jealous Rusbands" Problem
. forbidden moves

(HyHpH3W Wy 1 Wa*) &3 (HjHpH3W WoW3*:) initial state > (H1H2W1 WaW3:H3*)
(H3H3WW2W3 1 Ho )
(H1H2H3W1W3:W2*) | (H2H3W1WoW3:Hy*)
§31H1H2R3 H2H3*;
(H1H2H3WaW3: W1*) HaW3WaW3: HyH3*
’ (H3WiWoWa e HyHD®)
- (H2H3WIW3: HiW2*)
(HoHaW Wo : HiW3*)
(HiH3WaW3: HoWy ¥)
(H1H3W1 W2 : HoWs*)
(N1HoWoW3: H3Wi ®)
(H1H2W1W3: HaWa*)

= (H1H2HaW1: WolWa*) (H1HoW1W2 1 H3W3*) oy =—~=> (H1H2W1W2W3*:H3)
(H1H2H3W2: W1W3*) (H1H3W1W3 1 HaWo*)y f=-==> (H1H3W]WoW3*:H))

(H1H2H3W3: W1W2%) (H2H3WaW3 s HIWI*) | {-=~=> (FaHaWiWaWa*:H])

= (HpHoH3WIWo*:W3) €=

=3 (H1HZHIWIW3*: WD) <

= (H1H2H3W2W3*: W) «
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The concept of an embedding of one problem representation in:o
another allows us to classify further the alternative representations
which may be constructed for a given problem statement. For example,
it is commonly asserted that the state-space in Figure 4.2 "is" the
state-space for the missionary-cannibal problem; we have already noted
that such an assertidn must be interpreted as referring to a class of
isomorphic state-spaces. However, there is still greater flexibility
in specifying the state-space, even without the device of including
the “"{llegal states”" in Figure 4.2, For example, we may choose to
record separately the intermediate configurations in which one or two
missionaries or cannibals is in.the rowboat, part-way across the river, .
In this more complex representation of the missionary-cannibal problem,
there are not only many more states, but there are many more blind
alleys than in Figure 4.2, For example, the path from the initial
state (MMMCCC*:) to (MMCC:MC*) ‘may now be represented by the thige
states (MMMCCC*//), (MMCC/MC*/), (MMCC//MC*), where the two slashes
stand for the two banks of the river, From the state (MMCC:MC*) there
‘were formerly no legal '"blind alley" moves; now, however, the move from
(MMCC//MC*) to (MMCC/C*/M) is still legal and represents a blind alley,
since if the cannibal lands on the left bank, the conditions of the
problem are violated, Some, but not all, of the "forbidden moves" in
Figure 4.2 now have legal intermediate ''blind alley" states heading
towards them,

In short, there is an embedding of the state~space in Figure 4.2
in the more complex state-space, and the latter is certainly an equally
valid representation of the problem structure.

This example is not merely a trick; it illustrates a fundamental
issue in the definition of structure variables such as the number of
steps or the number of blind alleys. Indeed, one could carry forward
the expansion of the missionary-cannibal state-space still further.
Suppose that we define a state of the missionary~cannibal problem to
be a configuration of missionaries and cannibals, rowboat and river,
together with the label t for ''tested"” or u for "untested,” Untested
states have not been examined with respect to the condition that canni-
bals are not to outnumber missionaries, and are therefore legal--however,
the only move permitted from an untested state is to test it. From a
tested state, one is only permitted to move to an untested state. In
this expanded state-space, the "forbidden moves" in Figure 4,2 have
become legal, "untested' states, There is an embedding of the state-
space in Figure 4.2 in the expanded state-space which assigns to each
original state the corresponding 'tested' configuration,

We see that given a problem statement, it will often be possible
to construct alternate state-spaces which are accurate representations
of the problem, and which are not isomorphic.  Typically they will be
related to each other by means of an embedding, and will have differ~
ent values of important structure variables. This is a more precise
characterization of the difficulty which we noted at the beginning of
this chapter in specifying the number of steps needed to pass from
the equation 2x + 3x = 10 to the equation 5x = 10,
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It is not meaningful, then, to specify structure variadles in an
absolute sense; that is, we cannot say ''the number of steps needed to
solve this problem 7s n." However, we can specify the values of
structure variables in a specified representation of a problem, This
permits us to compare problems having different values of structure
variables, as long as we arg consistent in our choice of representa-
tion for the problems.

Symmetrzes and Subspacngecomvos tio

Utilization of intrinsic problem symmetry can often contribute to
insightful problem solving (Goldin and McClintock, in press). Like-
wise, the decomposition of a problem into subproblems through the
selection of subgoals can be an effective procedure. Here we shall
define task structure variables associated with problem symmetries
and subproblem decompositions. These characteristics of task struc~
ture may be thought of as representing the potential for use of
appropriate heuristic processes.

An automorphiem of a problem is an isomorphism of the problem
state-space onto itself. Such an autcmorphism is also called a
symmetry transfermation of the problem representation., For example,
automorphisms of the tick-tack-toe game tree may be obtained by
rotating the tick-tack-toe grid by 1/4, 1i/2, or 3/4 of a complete
turn, or by reflecting the grid vertically, horizontally, or diagonally
(see Figure 4.9). Corresponding automorphlsms may therefore be
obtained for the representations of all of the gaues isomorphic to
tick-tack-toe,

The set of symmetry transformations of a system always forms a
mathematical group. Any ordered pair of symmetry transformations may
be performed in succession to obtain a third symmetry transformation,
thus defining an associative binary operation. The identity trans-
formation is always included as 3 symmetry transformation by conven-
tion, and for every symmetry transformation, there exists the
inverse transformation which returms the system to its initial
nmonfiguration. The symmetry transformations of a state-space thus
form a group which we shall call the symmetry group of the problem
or game representation,

For any problem or game, we may now consider as a new task varia-
ble the number of symmetry transformations of a representation; i.e.,
the order of the symmetry group.

Many of the problems and games already discursed display some
sort of state-space symmetry; for example, the nickel-dime problems
(Problems 4.4a-c) possess bilateral symmetry (symmetry group of order
2), as does the Nim subgame depicted in Figure 4.7. 1In tick-tack-toe,
the symmetry group of the state-space is of order eight, and corres-—
ponds to the geometric symmetry of the tick-tack-toe grid; while in
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Figure 4.9 Tick-tack-toe States Equivalent by Rotation and Reflection Symmetry

~
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X 0 X 0
0 X X 0
0 X X 0
X ( 0 X 0 )
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Figure 4.10 3-Pile Nin;?Staz‘:es Equivalent by Permutation Symmetry
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Number Scrabble, the embodiment of the game\is such as to conceal tle

symmetry which is in fact present, Thus problem symmetry may be more
or less overt, depending upon the problem embodiment,

Whenever a state-space possesses symmetry, it is possible to
construct 8 smaller, reduced state-space in which states equivalent
by vircue of symmetry transformations have been identified with each
other. To develop this concept precisely, let s be a state in a given
state-space S, and let G be the symmetry group of S. Consider the set
of all states which can be obtained by applying elements of G to the
fixed state s; this set, denoted Gs, will be called the orbit of s
under the action of G. Two states in S will be called equivalent
modulo G if they are in the same orbit under the action of G. - The
orbits in the state~space form mutually disjoint equivalence classes
of states. '

For example, the eight tick-tack-toe states in Figure 4.9 all
belong to the same orbit. Of course some orbits in the tick-tack-toe
state-space contain fewer than eight states. The state with X in the
~center square, for example, the other squares being empty, stands
" alone in its equivalence class.

Given a state-space S having a symmetry group G, a new and smaller
state-space S' may be constructed as follows. Let each equivalence
class in S (modulo G) be a state in S'; let the initial state in S'
be the equivalence class containing the initial state in S; and let
the goal state(s) in S' be the equivalence class(es) containing the
goal state(s) in S. Define a move to be permitted from one state of
S' to another state of S' if and only it there exists a state sj-in
the first equivalence class and a state s? in the second equivalence
class, such that (sy,s2) is a permitted move in S,

The state-space S' thus obtained will be said to have been reduced
modulo the symmetry group G. It may sometimes be convenient to
represent S' by selecting one representative state from each orbit
in S.

By way of illustration consider the following generalization of
the game of Nim,

4,10 In the game of n-pile Nim, aj matchsticks are placed
in the first pile, ap in the second pile, and so forth,
with a, matchsticks in the nth pile. The object of the
game 18 to be the player to remove the last mateh, Each
player, in turm, may take away as many matchsticks as
desired, but only from one pile.

The state-space for n-pile Nim may be mapped by means of an injective
homomorphism into a state-space possessing n-fold permutation symmetry.

1eag,
O]
o,
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Let m be the maximum of all of the aj for 1 = 1, 2, ..., n; let the
state—-space consist of all configurations which can be reached by
applying legal ' moves to the state (mm...m;A)." Any permutation of

the n piles now defines an automorphism of this state-space. Figure
4.10, for example, illustrates six 3-pile Nim states which are equiv-
alent by permutation symmetry, In depicting the reduced state-space,
only one of these states-~-for instance, the state (123;A)~-might be
used to stand for the equivalence class of the six states.

I;'Figure 4.11 the symmetrical subspace of the 2-pile Nim state-
space, which was pictured in Figure 4.7, is reduced modulo the exchange
symmetry. Now the state (21;A) stands for the equivalence class con-
taining (21;A) and (12;A). Note the legal move in Figure 4.11 from
(21;A) to (10;B), which is present because the move from (21;A) to
(01:B) is legal in Figure 4.7,

Given a state-space S having a symmetry group G, and letting S'.
be the reduced state-space, define the mapping f from S to S' which
assigns to each state in S its corresponding equivalence class in §’,
f defines a surjective homomorphism from S onto'S'., Thus there 1s a
surjective homomorphism from Figure 4.7 onto Figure 4.11.

Returning to the question of altermative representations for a
given problem statement, we remark that when symmetry is present, a
choice must be made——to incorporate the symmetry from the start by
utilizing a reduced state-space, or to neglect the symmetry by treat~
ing states equivalent by symmetry as distinct states. From the
standpoint of efficient problem-solving, it may be desirable to
incorporate as much of the symmetry as possible, However, many
problem solvers will not recognize all of the symmetry which is in
fact present, at least at the outset of problem solving. Thus from
the standpoint of defining and investigating task structure variables,
it is desirable to characterize the expanded state-space, the symmetry
group, and the state-space reduced modulc the symmetry group.

The symmetry group G of a state-space may have various subgroups,
each of which contains only certain specified symmetry transforma-
tions. Then, for any subgroup H of G, it will be possible to define
S". ~the state-space reduction of S modulo H. S" will be a state-space
intermediate in size between S and S', into which some but not all of
the available symmetry has been incorporated.

Finally let us remark that certain problem representations
possess forward-backward symmetry. Given a problem with a single
'goal state, one may construct the inverted problem as follows: (a)
the goal of the original problem becomes the initial configuration
of the inverted problem; (b) the initial configuration of the origi-

‘ nal problem becomes the goal of the inverted problem; and (c) given

~ the two problem configurations sy and sp, a move is permitted from sy
to s» in the inverted problem if and only if the rules of the original
problem permit a move from sy to sj. We note, however, that for a

155
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Figure 4.11 Reduced Symmetrical Subspace of the z-Piie Nim State-Space
(compare with Fig. 4.7) ‘

initial . .
state
(22;8)

. (21;A) (20;4)

A's goal
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configuration to be a state in the state~space of the inverted prob-
lem, it is neither necessary noxr sufficient that it be a state in the
state-space of the original problem, The configuration might not be
reachable from the initial state of the original problem, although
reachable by "working backward" from the goal state of the original

problem. A problem is said to possess forward=backward symmetry when
the state-space of the inverted problem is ‘somorphic to that of the
original problem.

Many of the examples that we have mentioned thus far have forward-

backward symmetry. In the various versions of the missionary-cannibal
problem (Figures 4.2 and 4.3) and the Jealous Husbands problem (Figure
4.8), the problem statements are such that any legal move is reversi-
ble. The state-space for the inverted problem is the same set of
states as the state-space for the original problem, The forward-
backward symmetry is apparent in the state-space diagram, and
corresponds simply to exchanging the two banks of the river in the
problem statement. In the nickel-dime problems (Figure 4,4), the
permitted moves are not reversible, With the exception of Figure
4.4(a)--the problem of one nickel and one d:ime~-the state-space
diagrams do not display forward-backward syrmetry. Nevertheless, when
one constructs the state-space for the inverted problem, it is isomor-
phic to the state-space for the original problem; it includes configu-
rations which are not present in Figure 4.4 becatse they cannot be
reached from the initial state in Figure 4.4, and it excludes other
configurations which are present in Figure 4,4, The forward-backward

symmetry corresponds to exchanging "dimes" and "nickels" in the original

problem statements,

The problem of the two pails (Figure 4.1) is aﬁ example of a prob-
" lem which does not possess forward-backward symmetry,

We have seen that one way of reducing the state-space for a prob-
lem or game, and establishing equivalence classes of states, is with
respect to a group n»f symmetry traasformations., A second way of
reducing the state-space is with respect to its infrastructure of sub-
problem or subgame state-spaces. A subspace of a state-space S is a
subset T of §, tugether with the moves which are permitted from one
state in T to another state in T. From time to time we may designate
a state in T as the "initial" state for the subspace, and a particular
set of states in T as "subgoal" states.

Figure 4.7 illustrates a subspace of the 2-pile Nim state-space.
In fact, given a homomorphism £ from a state-space R into a state-space
S, define the image of the homomorphism to be the set of all states s
in § for which there is at least one state r in R such that f(r) = s,
Then the image of the homomorphism is a subspace T of S. The initisl
state in T may be characterized as the image of the initial state in R,
and the set of subgoal states in T as the image of the set of goal
states in R.

157
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An interesting situation arises when the state-space of & problem
can be partitioned into mutually disjoint subspaces, in such a manner
that for any pair of subspaces, there is st most one germitted move
between a state in one subspace and & state in the otAer. An example
is provided by the well-known Tower of Hanoi problem.

4

4.11 Four concentric rings (labeled 1,2,3,4 respectively)
are placed in order of size, the smaZZeet at the top,
on the first of three pegs (labeled A,B,C}, as in the

diagram below.

o

The obgjecet of the problem is to transfér all af che
rings from peg A to peg C in a minimum nwmber o
moves. Only one ring may be moved at a time, and no
larger ring may be placed above a smaller one on any

peg.

W Dy DY 2

-

Figure 4,12(a) depicts a state-space for the Tower of Hanoi problen,
In Figure 4.12(b)-(c), the state-~space has been partitioned into
mutually disjoint subspaces in various ways. .

Given a state-space § which has been thus partitioned, a new and
simpler state-space S' may be defined by considering each subspace of
S to be a state in its own right in S'. The initial state in §' will
be the subspace containing the initial state of S, and a goal state in
S' is any subspace containing a goal state of S. A move is permitted
from one state of S' to another state of §' if and only if there exists
a state sy of S in the first subspace, and a state s2 of § in the
second subspace such that the move (s1,s7) is permitted in S,

The state-space S' obtained in this fashion is said to have been
reduced modulo the subspace decomposition of S, S' may sometimes be
conveniently represented by selecting a representative state from each

subspace of S,

In the Tower of Hanoi problem, a "l-ring subspace" is isomorphic
to the task of transferring a single ring from one post to another; a
"2-ring subspace" is isomorphic to the task of transferring two rings
from one post to another; and so forth. In Figure 4.12(b), we see
that when the state-space for the 4-~ring problem is partitioned intu
2-ring subspaces, the reduced state-space is isomorphic to a 2-ring
Tower of Hanoi state-space, Likewise, when the 4-ring state-space
is partitioned into 3-ring subspaces, the reduced state-space is iso-
morphic to a l-ring Tower of Hanol state-space; and when the &4-ring

ik
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igure 4.12 State-Space Representation for the 4-Ring Tower of Hanoi
Problem, and its Partitioning into Subspaces

(a) The Tower of Hanoi state-space. The four letters labelling

: . & state refer to the respective pegs on which the four rings
' / are located.

. AAAA (start)
CAAA . . BAAA
. BCAA

BBAA . . . . CCAA
. CCBA

AACB . . . . BBCB . . . . AARC
BBBB . . . . ..+ . .. ... ... CCCC (goal)

(b) Decomposition of the 4-ring state-space into 2-ring subspaces.

a 2-ring subspace

Qo . r{)s
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Figure 4.12 (econtinued)

(c) Decomposition of the 4-ring state-space into l-ring and 3-ring
subspaces.

a l-ring
subspace

a 3-ring subspace

Trp
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state-space is partitioned into i-ring subspaces, the reduced state-
space i{s isomorphic to a 3-ring state-space (Figure_&.lz(cﬂ).
. /
The Tower of Hanoi problem has the additional interesting feature
that in the subspace decompositions illustrated, all of the subspaces
are themselves mutually isomorphic in each decomposition.

The reduction of a state-space with respect to a sygmetry group
G, and the reduction with respect to a "subspace" decomppsition, are
similar to each other in that both reductions involve the establish-
ment of equivalence classes of states. For the case of 'a symmetry

- group, two states are equivalent if they are conjugate by virtue of

a symmetry automorphism of the state~space; for the case of a sub-
space decomposition, two states are equivalent if they7are contained
within the same subspace. We hive shown for each type/ ' of reduction
how to obtain a smaller state-space S' from the original state-space
S. For reduction modulc a subspace decomposition, as for reduction
modulo a symmetry group, there always exists.a surjective homomorphism
from S onto §' which is obtained by mapping each state in S to the
equivalence class in §' which contains it.

We have spent a considerable portion of this chapter developing
the concepts of state-space homomorphisms and isomorphisms, and
symmetries and subspace decompositions, purely from the point of
view of the formal analysis of intrinsic task structure. Let us
digress at this point, and discuss the psychologic3l meaning that
these features may potentially have for the problem solver.

Consider first the case of a particular subproblem of a given
problem. Associated with the subproblem is a subspace of the prob~-
lem state-space. We may imagine that during the course of problem
solving, a problem solver might succeed in solving the subproblem,
so that every time it is encountered, it is solved directly and
nearly automatically. Perhaps a special name is even conferred on

"the subproblem, which suggests the use of a particular solution

algorithm. In some sense the subproblem is abstracted from the

main problem by the problem solver, and '"chunked'" as a single entity.

This is suggestive of the process which Krutetskii (1969, 1976) calls
"curtailment."

Selection of a subgoal (or specification of a set of subgoals)
by the problem solver establishes a subproblem of the main problem.
Thus we might envision an ideal sequence of eden:s, in which the
problem solver (1) establishes a subgoal, (2)/solves the correspond-
ing subproblem, and (3) "chunks" the solution algorithm to the
subproblem. Conceptually, the latter step corresponds to replacing
the subspace of the state-space by a single state, without altering
the overall network structure of the state-space (except, of course,
for the elimination of the moves that are internal to the subspace).

If the state-space can be partitioned inco subspaces, with each
subspace corresponding to a particular subproblem (as with the Tower

A
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of Hanoi), we may anticipate the possibility of sfages during problem

solving, corresponding to the solution of particular subproblems and

the curtailment of thinking with respect to those subproblems, When

the state-space is partitioned into Zsomorphic mubspacnl, there may

exist stages corresponding to the solution of particular isomorphism

classes of subproblems.. ;
' /

Next consider the case of a problem for which the state=space
possesses symmetry, We may suppose that at the outset, a problem
solver might regard the various problem states or configurations as
distinct from each other, even though they miy be symmetrically conju-
gate (and thus equivalent as far as the problem structure is concerned),
During the course of problem sclving, such states may come to be recog-
nized as equivalent causing perhaps a prof¢und change in the problem

solver's "perception" of the problem,

Recognition of the symmetry which is present in & problem repre-
sentation is often a key to insightful proplem solving. Thus problem
state-spaces which possess such symmetry offer the opportunity to study
the process whereby this kind of insight gccurs. Again we have the
possibility of stages corresponding to the recognition of particular
features of the problem symmetry (subgrougs of the problem symmatry
group), and curtailment of thinking whereby States are considered '"'the
same'" when they are equivalent by virtue of a symmetry transformation.

Problems with isomorphic or homomorphic representations present
the opportunity to study transfer of learning from one problem~-solving
experience to another. The process whereby problem solvers come to
recognize analogy of problem structure corresponds to the component
of mathematical ability Krutetskii calls "generalization.”

Comparison of a problem representation with a representation of
the inverse problem rrovides the structural framework necessary for
the study of 'reversibility of thinking,” a third component of mathe-
matical ability in Krutetskii's model. For problems having forward-
backward symmetry, any algorithm or strategy which solves the inverse
problem has a corresponding algorithm or strategy which solves the
original problem; thus the inverse problem is no easier than the
original. Nevertheless, problem solvers who can carry out a certain
strategy ''working forward," and then carry out the corresponding
strategy "working backward,"” may be able to "connect" these paths,
thus arriving at a solution by different means than those who work
exclusively in one direction. At the other extreme, problems with
representations which in the '"forward" direction have a multiplicity
of branches, and in the 'backward" direction have very few branches,
possess the structural characteristics for "working backward” to be
more successful than "working forward."

To sum up, as examples of the usefulness of state-space analysis,
we have seen that it permits us to characterize with some rigor the
problem characteristics which facilitate the study of three of

—
~
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Table 4.2 Stiructure Variables Defined with Reference to State-Spaces .

Numerical variables describing a problem state-space S

Total number of states

Length of the shortest solution path

Number of blind alleys

‘Number of possible first moves

Number of goal states

Ratio of the number of goal states to the total number of states
Number of elements in the symmetry group G

Non-numerical structural characteristics of the state-space §

Equivalence classes of states under the action of:%he symmetry group G

Subgroups of the symmetry group C -

Subspace decompositions' of the state-space (particularly, decomposition
into mutually isomorphic subspaces)

Forward-backward symmetry within the state-space §

Relationships to other problem state-spaces T
s )
Existence of an isomorphism between S and T
Existence of a homomorphism between S and T; inm particular:
An injective homomorphism from T to S (subproblem of §)
A surjective homomorphism from S to T (reduction of S)
Characteristics of the inverse problem of § (particularly, isomorphism
of S with its inverse problem)
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Krutetskii’a components of mathématical ability--curtailment, general-

{zation, and reversibility of thinking (see Chapter I, Table 1,3). Im

Chapter X.A, Luger explores the possibilities for using problems having

some of these characteristics in teaching, in order to foster the develop-

ment of mathematical ability. ' L

Table 4.2 summarizes the structure variables which have been
defined with reference to state-spaces, '

Algorithms and Strategies

An algorithm is a well-defined procedure for solving a class of
prcblems in a given representation. Algorithmic analysis may be con-
sidered an alternative to state-space analysis for the definition of
task structure variables. However, the two approaches are quite )
compatible, since an algorithm may be described with reference to the
set of operators on a state-space. Thus an algorithm will accept the
initial state as input, and, by successive application of operators,
will generate a sequence of successor states until a goal state is
reached. In this manner, given an initial state, an algorithm defines
a unique patb through the state-spaee. We may imagine the path gene-
rated by an algorithm as an "overlay" on the collection of problem
states, with alternative algorithms generating possibly distinct
8olution paths,

Choice of a particular algorithm permits the comparison of prob-
lems with respect to task structure variables that are defined with
respect to the algorithm. These include: (a) the number of steps in
the solution path generated by the algorithm; (b) the number of times
any particular loop in the algorithm is traversed; {(c) the number of
times any particular branch point in the algorithm is crossed; and (d)
the number of times any particular operator is called for by the
algorithm., Structure variables defined with respect to algorithms seem
to make the most sense in highly reutinized, computatignal tasks, where
standard algorithms’ are widely taught to students, Their definition
depends not only upon the choice of a mathematical representation for
a problem, but also upon the choice of a method of solution within the
representation. . - :

3 . ‘ , )

Let us now approach the coﬁcept of a strategy as a generalization®

of an algorithm. A strategy is any procedure which narrows the set of

_ possible moves, without necessarily singling out a unique move, - Thus,

while an-algorithm is defined with referepnce to operators which are
partial functions on the state-space, a strategy may be defined with
reference to partial relations on the state-~space. A partial relation
maps each state in its domain into a set of possible successor states.
Thus a8 strategy does not necessarily lead to a unique path within the
state-space. Instead it generates a set of possible paths, which may
or may not include a solution path,

164

- “® /s



~149-

* This definition of the term "strategy" is quite consistent with

. ordinary usage. In chess, for example, a strategy associated with a
particular opening variation might be, “seek to obtain control of an

open Queen's Bishop file." Such a strategy does not single out a
unique move or sequence of moves, but it is considerably more precise

®*  (and more problem-specific) than a heuristie process as the term is

used in this book by McClintock and by Schoenfeld. A strategy
establishes a well-defined subset of moves for consideration on a
particular turn. Sometimes a heuristic process will suggest a
particular solution strategy (or algorithm) in a particular situatiom.

In our sense of the word, a strategy is no more vague than an
algorithm, when it is well-defined. It merely allows for a set of
possible continuations, rather than a single continuation, at each
juncture. To be well-defined, the set of possible moves must be
unambiguously described for any state to which the strategy is
applicable. Our use of the term "strategy" is similar to the use
by Landa (1976a) of the term "semi-algorithm" (p. 37).

Sometimes a problem is susceptible to an easily-described
strategy, when an attempt to write a detailed algorithm leads to
a cumbersome and artificially complicated procedure. For example,
consider a routine problem involving two independent simultanecus
linear equations in two unknowns, X and Y, with non-zero coefficients.
The procedure, '"'solve for Y in the second equation and substitute in
the first equation; then solve for X," represents the outline of an
algorithm; but it may not generate the simplest solution. In contrast,
the procedure "solve for one of the variables. in one of the equations
and substitute in the other equation; then solve for the other varia-
ble," outlines a strategy. The first procedure, when sufficiently
elaborated, will define a unique sequence of steps; the second pro-
cedure will define four possible sequences, However, if we attempt
to turn the second procedure into an algorithm by spelling out in
precise detail how to select the variable to be solved for first, and
the equation in which it is to be solved for, a cumbersome result
emerges which is contrary to the spirit of the strategy.

Just as task Structure variasbles may be defined with respect to
a particular algorithm, they may be defined with respect to a partic-
ular strategy. For example one may compare problems with respect to
(a) their susceptibility to solution by means of a particular stra-
tegy, (b) the minimum number of steps in a solution path generated
by a particular strategy, and so forth.

If two state-spaces are isomorphic, any strategy which may be
defined in one state-space has a corresponding strategy which may be
defined in the other.




»
b
i

Structure Variables in.Routine "'Q}ErobZems

Up to now the problem ‘examples we have taken-~the problem of the
two pails, the missionaries and cannibals, the Tower of Hanoi, etc.--
have been principally,of the nom-routine variety. Such problems have
two features which make the statecrspace analysis particularly easy.
First, the rules of procedure stated in the problems are few, making
it possible to identify a small number of operators which characterize
the state-space, Frequently the state-space itself is small enough so
that it can be fully displayed. Setondly, the states themselves
correspond to configurations of physical objects described in the
problem statements--pails of water, rings and posts, and so forth,
When we turn to routine problems in, say, elementary algebra, these
features are no longer present. Nevertheless, a state~space ar tlysis

is possible which does not differ in principle from the kind we have
already performed.

In routine problem solving, which includes most of the problem-
solving imstruction offered in schools, there usually exists a
standard representation which is tqught to the students, and which it
is expected they will use in writing solutions. Such a representatica,
then, should be used as far as possible in defining the task structure
variables. It may also be valuable to consider representations expanded
from the standard representation; i.e., in which the standard represen-
tation can be embedded, or from which the standard representation can
be obtaifed by state-spacc reduction,

A routine word problem in elementary algebra can be translated
into a representation by means of finitely many equations in finitely
many unknowns, It is such a configuration of sywbols which we shall
treat as a state in a state-space, for the purpose of studying struc-
ture variables. This is not tr ny the importance of other (non-
standard) representations which wight also be worthy of examipation.

For example, consider a problem such as the following,

4.12 Seven children each have the same nuwmber of marbles.
In addition there cre eleven marbles in a bag. All
_together, there ure 102 marbles. How many marbles
does each child have?

The problem might be translated into the equation "7x + 11 = 102,"
This configuration of symbols then becomes the initial state for the
problem state-space. In other words, the state-space analysis begins
after the translation has been completed, as suggested by Figure 1,1
in Chapter I. The goal state for this problem is any state of the
form "X = [numeral]"” which can be obtained from the initial state by
"legal moves."
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The context of the problem ("marbles') may suggest a solution
which 1s a positive integer, encouraging the use of (non-standard) .
"guess-and-check' procedures, These procedures, too, can be recorded
in a state-space (see Chapter VIII,A),

The left~hand side of Figure 4.13 shows a solution path for the
‘above ptoblem in an exparded state-space; on the right is a solution
path in a reduced state-space. The right-hand side of the figure
depicts a path likely to correspond to the written work of many
students. Curtailment may result in some of these steps being
skipped or abbreviated, as shown. On the other hand, the left-hand
column is intended to represent some of the theoreticalpossibilities,
steps which might be taken by some¢ students at various times. The
following are some of the features of state-space reduction which
were discussed earlier that have application to the correspondence
between the expanded state~-space and the reduced state-space in this
diagram.

(a) States related by virtue of the associative property for
addition may be taken as equivalent, and the "unnecessary" parenthe-~
ses removed. Likewise, states related by virtue of the associative
property for muitiplication may be taken as equivalent. Furthermore,
states related by virtue of the inclusion of superfluous parentheses
.may be taken as equivalent. For example, the two states "(7x + 11) +
(-11) = (102) + (-11)" and "7x = (11 + (-11)) = (102) + (~11)" may
correspond to the same state, "7x + 11 + (-11) = 102 + (-11)." The
removal of parentheses amounts to the disregard of certain "irrele-
vant" attributes which formerly distinguished the states from each
other. In the language of this chapter, a surjective homomorphism
(many-to-one) is defined from the expanded state-space onto a reduced
state-space, The more experienced the problem solver is in algebra,
the more rapidly and "automatically" the irrelevant parentheses are
removed or ignored.

(b) States incorporating expressions for addition of a negated
quantity may be taken as equivalent to corresponding states incor-~
porating subtraction of the quantity, Thus, the state "7x + 11 +
(-11) = 102 4+ (-11)" can be reduced still further, to the state
"7x + 11 - 11 = 102 - 11.,"

(¢) States related by virtue of the addition of zero, or multi-
plication by unity, may be taken as equivalent, , Disregard of these
"{rrelevant'" attributes of the states results in further reduction
of the state-space,

(d) Computational algorithms may be considered a single "step”
in a reduced state-space. When we focus on the algebraic structure
. of a problem, each arithmetic computation becomes a self-contained
subproblem, with an associated subspace of the state-space that can
be identified with a single state in the reduced state-space., Again,
more experienced problem solvers in algebra "chunk” such computations,
so that possibly complicated numerical computations do not result in
lengthy detours from the main argument,
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-Figure 4.13 4 Solution Path for a Linear Equation in One Variable in
. an Expended State-Space, with Possible Reductions
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(e) Any letter might have been consistently substituted for X /
The arbitrari- |

without changing the structure of the solution path,
ness of the choice of letter symbols is an overall symmetry of the /

standard representation for problems in algebra.

The steps in the expanded state-space which are displayed in /
On the one

Figure 4.13 may be thought of from two perspectives. /
hand, some of the steps resemble those presented in the rigorous
"justifications'" of algebraic manipulations given in some texts,

in which each step is accompanied by the appropriate 'reason":
"addition axiom for equality,” "associative property of additiom,"
"additive inverse property," "additive identity," and so forth. On

the other hand, other steps resemble those taken by a rather dull

o

' who cannct perform any steps mentally or see two steps

"plodder,’

ahead in the problem and who finds it necessary to write "+0" in
place of "+11 - 11" before dropping the expression altogether. Of
course, these interpretations are merely metaphors. The steps in
Figure 4.13, along with many other possible valid expressions for
the "same" mathematical procedures, are simply "there"; they form
a part of the task environment for the solution of elementary algebra
problems as taught to a substantial population of students.

be expanded or reduced still
"(1)1{' %(91)11

The state-spaces of Figure 4.13 ma
(91)" to
"1.7 = l’ll

further. For example, the step from "(7.7)x -
may be considered to pass through the intermediate step
which is then followed by a substitution. At the other extreme, the
steps from "7x + 11 = 102" to "7x = 102 - 11" may be taken as a single
move ("bring the constant term to the other side with a change of

In short, many levels can be defined in which state-spaces

sign').
of symbol-configurations for routine algebra problems are embedded in
We note again that very different

more complicated state-spaces.

paths are obtained when "guess-and-check'" moves for finding the value
of X are examined. It is not the purpose of this section to describe
exhaustively all of the possibilities, but to lay some groundwork for
the definition of structure variables in routine algebra problems.

Diagrams such as Figure 4,13 may be constructed for more compli-
cated problems inveolving more equations and more unkaowns. Each
"method" for solving such systems of equations yields particular

For example, there are moves based & substi-

sequences of moves.

tution for the value of one of the unknowns in teris of the others;

there are moves based on addition or subtraction of one equation from
All of the considerations mentioned above about the level

another.
of expansion or reduction of the state-space apply as well.

In general, the skilled mathematics teacher is coguizant of the

alternative paths which may lead to solutions of routine algebra
problems, as well as the alternative levels of detail with which
steps can be represented. The well~instructed student should be
able to deseribe a step such as "bring the constant term to the
other side with a chapnge of sign'" as a shortcut for a sequence of
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more detailed steps, while using the shortcut naturally and freely as
a single step during problem solving,

With all Qf these considerations in mind, let us look at the
prospects for definition of task structure variables in routine prob-
lems.

Controlling for Problem Structure

In problem-solving studies, it is often important to develop
routine problems which have the ''same" mathematical structure, in
order to study the effects of other, experimental variables. Despite
the different possible choices of state-spaces, the concept of a
state-space isomorphism permits us to call problem structures "the
same" when the algebraic equations into which the problems may be
translated are the same, except for the choice of arbitrary letters
to stand for unknowns. The sfate-spaces for such problems will be
isomorphic regardless of which level of expansion or reduction is
used,

A more difficult sityation arises when it is desired to charac-
terize problem structures as '"'the same' when the values of numerical
constants differ. The characterization then depends upon the selec-
tion of a representation. In Figure 4,13 we may distinguish between
the algebraic moves and the computational moves which occur, and
require two conditicas in order that problem structures be ''the
same''-~(a) that the algebraic equations into which the problems may
be translated be the same, except for the choice of arbitrary letters
to stand for unknowns, and except for the choice of numerical con-
stants; however, corresponding numerals should have the same number
of digits, and the single-digit numbers "O" and "1" should not be
taken as equivalent to other single-digit numbers; and (b) the com~
putational moves for the problems should be in one-to-one correspon-—
dence, requiring corresponding paths through all standard computational
algorithms, These conditions that problem structures be 'the same" are
employed in the study by Goldin and Caldwell described in Chapter VI,

Selection of a representatio other than the standard algebraic
representation of solution paths may drastically alter the assertion
that two problems have ''the same' structure. The study by Harik
described in Chapter VIII.A utilizes a "search space" representation
for algebra problems which is based on "guess-and-check' moves.
Changes in the values of numerical constants have a major effect
on the size of the search spaces, Again we have the situation that
task structure variables describe the problem representation, not
the problem statement,

Defining Task Variables in a Standard Representation

In order to assign numerical values to structure variables such
as those listed in Table 4,2, it is necessary to fix once and for all

I'7¢
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an arbitrary level at which states will be considered to be distinct,
and to specify once and for all the steps which will be considered to
constitute individual moves from state to state. The following con-
ventions for a standard representation of elementary algebra problems-
are proposed:

(a) Symbol-configurations related by virtue of the associative
property of addition or multiplication represent equivalent states.
Symbol-~configurations related by virtue of superfluous parentheses
represent equivalent states. Thus the states "7x + (11 - 11) = 102-11,"
"(7x + 11) - 11 = (102) - 11," etc. are equivalent, and may all be
abbreviated "7x + 11 -~ 11 = 102 - 11."

(b) Symbol-configurations related by virtue of the commutative
property of addition or multiplication represent equivalent states.

(c¢) Symbol-configurations related by virtue of the symmetric
property of equality represent equivalent states. Thus "7x=91" is
equivalent to "91 = 7x."

(d) A single move is required for any of the following: (1)
to change both sides of an equation by adding, subtracting, multi-
pPlying by, or dividing by identical expressions (exclusive of
division by zero); (2) to change both sides of an equation by adding,
subtracting, multiplying by, or dividing by previously obtained
equations; (3) to change both sides of an equation by performing
a single operation on each side, such as negating each side, taking
the reciprocal of each side, squaring each side, etc.; (4) to per-
form a single arithmetic computation (regardless of. complexity);

(5) to substitute an expression for a variable consistently through~
out an equationy (6) to distribute multiplicacion over a sum or
difference of terms; (7) to distribute a negarion over a sum or
difference of terms; (8) to cancel terms of opposite sign, or to
cancel like factors in the numerator and denominator of a ratiomal
expression. :

With the above conventions, it is possible to characterize the
length of the shortest 'solution path in a problem such as "7x+11 =
102" in an unambiguous fashion. Six steps are required, as shown on
the right of Figure 4.13. With these conventions, it is also
possible to compare problems having different systems of equations
with respect to the lengths of their minimal solution paths, and to
keep track of steps taken by the problem solver which deviate from
the most direct paths. As the domain of problems under considera-
tion is widened, additional conventions may be assumed.

Once standard conventions for describing the states and moves in
elementary algebra problems have been established, we can examine any
particular category of moves as they are required for solution of a
problem. For example, the computational moves may be classified with
reference to the paths through standard arithmetic algorithms which
they require; the substitution moves may be classified with reference
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to the complexity of the substituted expression; the distributive
moves may be classified with reference to the number of terms over
which the distribution takes place; and so forth.

Comparing the Characteristics of Problem States

Another way to approach the study of structure variables in
routine problems is to examine the characteristics of the corres-
ponding systems of equations (the initial problem states), without
becoming involved in tracing solution paths through a standard state-
space, For example, problem states may be compared with respect to
the number of equations, the number of unknowns, the operation symbols
in the equations, etc. Of course, it is assumed that these charac-
teristi{cs have consequences for the solution paths in the state~
space.

The study by Days described in Chapter VII.B classifies verbal
problems by means of the characteristics of the corresponding systems
of equations, as well as by~the number of steps in the solution paths
(using conventions for defining ''steps" which are somewhat different
from those proposed above),

Comparing Problems with Respect to a Solution AZgoritkm
or Strategy :

, A final method which may be used to define task structure varia=-
bles in routine problems is to select a particular algorithmic

procedure or strategy which may be applied to a class of such problems
(see above). A well-defined solution algorithm will accept the initial
state as input and generate a unique solution path through a standard
state-space. Correspondingly, a well-defined strategy will generate

a set of possible-solution paths, which may or may mot contain an actual
solution path. One may then consider task variables defined from ch&g;ﬁ
acteristics of the paths, or from characteristics of the application of
the algorithm or strategy.

In this approach, task structure variables are defined not only
with respect to a particular mathematical representation of the task,
but also with respect to a particular method of sclution within the
representation, ‘

3. Structure Variables and Problem-Solving Behavior

Symmetries and Conservation Operations

i We saw earlier that the set of symmetry transformations of a state~
space always forms a group. The concept of a group is the paradigm in
mathematics of the methodology which has been termed "structuralist"
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(Lane, 1970; Piaget, 1970). According to Piaget, a structure in the
most general sense is a system or set within which certain relations
or operations have been defined, embodying the properties of whole-
ness, transformation, and self-regulation, Structuralist methodology
has been applied to fields as diverse as anthropology and linguistics
as well as psychology and mathematics (Bourbaki, var.j; Harris, 1951;
Levi-Strauss, 1963, 1969; Piaget and Inhelder, 1969)..

In Pilagetian developmental psychology, the acquisition of conser-
vation operations by children--conservation of number, volume, etc.-~-
defines sequential stages in their cognitive development. In view of
the parallel fundamental roles played by group structures in mathe=-
matics and cognitive structures in the structuralist view of develop-
mental psychology, it is natural to try to look at the acquisition of
conservation operations as equivalent to the acquisition of a group
of symmetry transformatioms.

In a problem representation, the states may be distinguished from
each other by virtue of having different discrete values for a set of
variables we shall call observables. The observables may or may not be
numerical--they may include color, position, and so forth, Let us say
that a symmetry group G in the state-space conserves a set B of
observables when, for everv state s, all states which are in Gs
(the orbit containing s) have exactly the same values for the observ~
ables in B. That is, the observables conserved by G are those whose
values are left unchanged by the symmetry transformations of the prob-
lem. Of course, for the states to be regarded as different at all,
there must be other observables which do change ir value under the
symmetry transformatioms.

Let us look at the state-space for a conservation of number task
from this viewpoint, Consider the rearrangement of n objects on a
table or two-dimensional surface, such as might occur during a number
conservation experiment., This is not a problem~solving task per se,
since it does not have an established set of goal states, Neverthe~
less, it is a highly structured task environment, for which a state-
space description may be useful. A configuration of objects may be
described by vector coordinates (xj, X2, ..., X3). A new configura-
tion of objects, described by vector coordinates (x1', %', ..., %5'),
may be obtained from the initial configuration by means of a rearrange-
ment mapping or deformation which appropriately transforms the points
in the two-dimensional plane. Such a rearrangement must be cne-to-one,
so that two objects do not wind up at the same point. It must also be
surjective, so that it is invertible. Noting that any two mappings of
this kind may be applied successively to yield a third, we have the
fact that the set of all such mappings forms a group, G.

Now take the collection of states to be the set of all possible
configurations of n objects on a two-dimensional table surface, for
n=10, 1,2, ,... (For the purpose of this discussion, we shall not
worry about the boundary of the table.,) A move consists of changing
the position of a single object, or of removing an object, or of
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Figure 4.14 Rearrangemenis of n Objects in 2-Dimensional Space

(a) A general rearrangement by means of a spatial deformation.
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(b) Rearrangement of n objects by means of a translation mappoing.
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(c) Rearrangemeht of n objects by means of a rotation mapping.
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(d) Rearrangement of n objects by means of a dilation mapping.
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adding an object, The group defined sbove maps the set of states
onto itself and satisfies the definition of a symmetry group for f
this state-~space. i
i

To say that number is conserved means that when a given state is
transformed into an altered state by moving the objects around, np: by
adding any or taking any away, then the value of the observable |

"number" remains unchanged at n. Thus, the acquisition of numbe:
conservation by the child (that is, the ability to respond directly
that the number of objects remains unchanged when only the pcsitions
of the objects have been altered) corresponds to the acquisition of
the structure of the symmetry group G (that is, the ability to undo or
invert any rearrangement transformation, and to perform two such trans-
formations successively to obtain a third).

Mathematically, the group G has a rich structure of subgroups--
translations, rotations, reflections, dilations, etc. Some of these
are illustrated in Figure 4,14, Each subgroup defines a -correspond-
ing system of equivalence classes of states. This suggests that
stages in the acquisition of a symmetry group structure might actually
correspond to the acquisition of particular subgroups. For example,

a child might at some stage recognize that the number of objects
remains unchanged when a configuration is merely translated & certain
distance in space, without its being spread out or otherwise rearranged.
If this were to occur, it would be possible to say that the subgroup of
G composed of all rigid translations had been acquired as a symmetry
structure. Effectively, the state-space will have been reduced modulo
the subgroup. ’

Just as the group G conserves the observable ''mumber," its sub-
groups conserve not only "number" but other observables as well. Thus
the rigid motions conserve the distances between objects. In additiom,
translations conserve their orientation to the horizontal, Dilations
preserve the orientations of the objects, but only the ratios of the
distances between them.

In general, specification of a symmetry group in a state-space is
logieally equivalent to specification of the observables conserved by
the action of the group.

The poinv of the above analysis is to assert that the various
groups described are intrinsic to the conservation task environment,
and thus may be regarded as task structure variables. For a Pilagetian
conservation task, we have gyntar variables characterizing the manner
in which the task is verbally described and in which questions are
posed; we have context variables characterizing the attributes of the
objects which are transformed (e.g., familiar vs. unfamiliar objects,
or objects which have a 'matural” one-to-one correspondence, such as
eggs and egg-cups); and we have structure variables relating to the
hierarchy of symmetry groups of the state-space. In much of the
research on conservation tasks, the syntax and context variables are



nodified in various ways, 1nf6£:er to verify that the observed stages
are not sensitive to these changes in the task., A less-explored
question has been the relationship, if any, of the observed stages

to the intrinsic task strg&:ure variables,

State-Space Representatign of Problem-Solving Behavior

. The value of state-space analysis in characterizing problem
structure suggests the ytility of mapping actual problem-solving
behavior as paths thpéu the state-space. A path is a sequence of
states S1, ..., Bp suc that for { = 1, ..., n-l, the pair (s4, si+1)

is a permitted move.’ A solution path for a problem (or subproblem)

is a path ir which 51 is the initial state and s, 1s a goal (or subgoal)
state, with sS2, ..., Sy_1 neither initial states nor goal (or, subgoal)
states. Two paths within respective isomorphic problems -are said to

be congruent (modulo the isomorphism) if one path is the image of the
other under the isomorphism. :

In problem solving it is frequently the case that the solver acts
sequentially upon problem situations (states) in an external represen-
tation to generate successor states. Ideally the process can be
described by means of paths through a state-space which has been
constructed and analyzed by the (omniscient) researcher, In practice
it may not be easy or even possible to recor vior in this fashion.
The best experimental situation is a probl¢m whose)states correspond to
different discrete configurations of an apgtual physical device, such as
the Tower of Hanoi board utilized by Lugér (see Chapter VII.C). The
study by Harik (Chapter VIII.A) is ipdfcative of the possibilities in
an experimental situation involving p%per-and—pencil computations.

/

The decision to represent p lem-solving behavior as paths through
an external state-space is motiva éd by the desire to establish pre--
cisely, ahead of time, a set of possible behaviors which is of manage-
able size. The problem solver's actual behaviors then constitute a
portion of the data which need to be explained by a theory of problem
solving. Problem solvers' protocols do offer considerable information
beyond the mere description of states entered in sequence; protocol
classification schemes are discussed further in Chapters V and VIII.B.
Thus it is important to stress that, in looking at state-space paths,
we are singling out a subset of the available data for particular
attention.

)

It is worthwhile to mention a distinction betweén this approach
and that taken by Newell and Simon, in which the problem space for a
single problem is permitted to vary from subject to subject (see Table
4,1). Instead of "states of the problem" as a structured external
environment, they place their focus on "states of knowledge" about
the problem. ~ Their approach thus permits, in principle, a very
detailed interpretation of an individual's problem~solving protocol
as steps in information processing. However, it also lends to their
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model a somewhat post hoc character--no definite commitment concerning
the siructure of the problem space needs to be made until after a
problem-solving attempt has been observed. Here we wish to regard

the problem solver and the task environment as two separate, inter-
acting systems. By characterizing the states of a problem represen-
tation ahead of time, we describe for a population of subjects a
structured set of possible behaviors together with their environmental
consequences. Then it is possible to formulate hypotheses regarding
the effects of problem structure variables on these behaviors, and
correspondences between the individual's "knowledge states' and the
problem's state-space can be explored.

* The state-space description of behavior is limited in its appli-
cability to localized problem-solving episodes during which the solver
understands the rules of procedure, and is able to discriminate ong
the different values of the perceptual variables which characteriﬁé}¥
the states. The acquisition of these rules and discrimipative abil
ttes prior to the commencement of problem solving is not addressed.
Nevertheless, some notion of how one intends to proceed from the

study of local problem~solving episodes to an understanding of the
global process of cognitive change needs to be made explicit. The
acquisition of symmetry group structures during problem solving may be
an important means of making this transition, The fact of which
symmetries are incorporated by the problem solver, and which are
neglected, determines which states are treated as equivalent and

which as distinct. Thus, as described in the preceding section, such
manifestly global changes as the acquisition of comservation operations
might be described in principle using symmetry group structures,

An approach to the study of patterns in the state-space paths
generated by problem solvers is to formulate general hypotheses, repre-
senting anticipated possible effects of problem structure variables
(Goldin and Luger, 1975; Luger, 1973, 1976). Whether or not these
effects actuilly occur may depend not only on problem structure, but
also on: syntax, content, and context variables, Even more importantly,
their occurrence will depend on characteristics of the problem solvers
(i.e., subject variables). Thus, what is proposed in the following
14st is not a set of hypotheses expected to hold universally, but a
set of patterns which can be tested for in particular situations.

Hypothesis 1. 1In solving a preblem, the subject generates non-
random, forward-directed paths in a state-space. By a forward-directed
path, we mean one which does not '"double back'" within the state-space;
that is, the distance (as measured by the number of steps) from the
initial state is non-decreasing. A special case of a forward-directed
path is a goal-directed path, for which the distance from the '"nearest"
goal state is non-increasing; the hypothesis may be modified to test
for gcal-directed paths. - ’

Given a decomposition of the s